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Abstract

This thesis addresses the decentralized task assignment problem in cooperative au-
tonomous search and track missions by presenting the Consensus-Based class of as-
signment algorithms. These algorithm make use of information consensus routines
to converge on the assignment rather than the situational awareness of the fleet. A
market-based approach is used as the mechanism for task selection, while the novel
consensus stage of the algorithms allow for fast distributed conflict resolution. Three
separate algorithms belonging to the Consensus-Based class of assignment strategies
will be presented. The first is the Consensus-Based Auction Algorithm (CBAA),
which is a single assignment auction strategy that is shown to be bounded within
50% of the optimal solution, while an upper-bound on convergence is presented. Two
multi-assignment algorithms are then presented as extensions of the CBAA. The it-
erative CBAA executes the single assignment algorithm multiple times in order to
build an assignment with multiple tasks. The second algorithm is the more general
Consensus-Based Bundle Algorithm (CBBA) in which agents build a candidate bun-
dle of tasks and bid on each task individually based on the improvement in score
achieved by adding it to the bundle. Both algorithms are shown to be lower bounded
by 50% optimality, while convergence bounds are derived based on the network topol-
ogy. Numerical results show that the bundle algorithm performs much better than the
iterative approach while providing faster convergence times. It is also compared with
the Prim Allocation (PA) auction algorithm where it is shown to exhibit much faster
convergence times and give better assignments. The CBBA is also implemented in the
CSAT simulation test-bed developed by Aurora Flight Sciences in conjunction with
MIT, and shown to produce faster response times and better tracking performance
than the currently used RDTA algorithm.
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Chapter 1

Introduction

Unmanned vehicles (UVs) have gained increased popularity over the years. Today,

UVs are actively used in areas such as military operations [3–5], search and rescue

[6, 7], perimeter security, underground mining [8], and hazardous environment explo-

ration [9–11]. They are able to provide increased operation time while in many cases,

minimizing the cost to complete a given task. With the lack of human occupancy on-

board, UVs are well suited for a wide range of missions that a manned-vehicle simply

could not perform, or would be considered too dangerous. As the demand for un-

manned operation has increased, so too has the increase in autonomy of the individual

vehicles, resulting in an increase in productivity and operational flexibility. This shift

has allowed missions that once required many humans to operate a single vehicle, to

be performed with only one human controlling many vehicles. With the success of

the recent DARPA Grand Challenge [12], it is not a far stretch to imagine that most

transportation systems in the future will have some autonomous capabilities.

Although individual autonomous vehicles have proven useful in many areas of

operation, it is ultimately teams of such vehicles that will provide the greatest benefit.

Combining vehicles with different capabilities into a heterogeneous fleet will allow

for more flexible missions and ultimately increase the utility. For example, search

missions would be able to cover more area as extra vehicles are added, surveillance

missions would benefit from the increased coverage as well as provide redundancy

in target localization. Groups of vehicles would also be able to complete missions
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Figure 1-1: Two UAVs must complete the two tasks shown. Without cooperation,
assignments are conflicted and a task is left unassigned. By cooperating, the fleet is
able to achieve higher mission performances.

requiring many different payloads as well as give the system a degree of robustness

to vehicle or payload failure [13]. Flexibility also exists in allowing vehicles to act

independently, as a team, or by creating sub-teams with different mission objectives.

In any case, the value of having multiple vehicles is apparent and can increase the

performance of almost any mission. The difficulty lies in coordinating the vehicles

so that they improve performance and not hinder it. Consider a simple fleet of two

Unmanned Aerial Vehicles (UAVs) that must each complete one of the two tasks

shown in Figure 1-1. Without cooperation, they will each select the closest task to

perform and complete it without considering what the other vehicle is doing. This

leads to a conflicting assignment since both have selected the same task and the

second task will go unassigned. With cooperation however, UAV 1 will realize that

UAV 2 is much closer to the first task, and thus, better able to perform it. UAV 1 can

then select the second task in order to maximize the value of the overall assignment.

The simple example described above illustrates the need for cooperation in mis-

sions with multiple vehicles. When the vehicles did not cooperate, they not only

failed to obtain the best possible assignment, but they also performed the same task

making one of the two vehicles unnecessary. This wastes resources and increases cost

for no reason. Therefore, a strongly coordinated and cooperative fleet is necessary to

fully achieve the benefits of a multi-vehicle platform.

20



Figure 1-2: Cooperative Planning System Architecture - image taken from [1]

1.1 Motivation

Cooperation amongst a fleet of unmanned vehicles is important in order to improve

the performance of a given mission. Without it, resources can be wasted and mission

costs might increase without any significant improvement in performance. However,

in a complex system with many vehicles and tasks, the coordination of vehicles is

not easily achievable. Vehicles have different capabilities, their states are constantly

changing, the states estimates of the tasks are dynamic and have a degree of uncer-

tainty that is different for each member. The environment might also be dynamic

or unknown, vehicle sensors can be very noisy, and many other factors exist that

might hinder the coordination of vehicles in the fleet. It is thus important to de-

velop algorithms that can efficiently produce plans in dynamic, noisy and uncertain

environments.

A general cooperative planning architecture can be found in Figure 1-2. In these

types of systems, a set of tasks is generated by a mission manager (MM), which are

then divided between the members fleet using a task assignment algorithm. Once

this is done, detailed trajectories can be generated for task execution to complete the

mission. In cooperative systems, this task assignment process is extremely important

since it is the mechanism for which members of the fleet will partition the assignment

space amongst themselves. This can either be done off-line, before the mission is per-

formed, or periodically as new information is received. Similar to the example listed

in the previous section, it is important that the assignment be done cooperatively

to improve performance and to ensure the mission objective is achieved. Difficulties

lie in agreeing on the many different information sets required to make a decision.
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One vehicle might think it has an accurate estimate of a task location, while another

might think it is in an entirely different area of the map. If the vehicles have trouble

agreeing on even this simple set of information, how then can they agree on a correct

assignment?

This thesis addresses the task assignment problem with a focus on search and track

missions. In these types of missions, a set of heterogenous vehicles might begin with

some a priori information about the whereabouts of possible targets, and are tasked

with searching the environment while keeping track of the targets that are found.

Vehicles might vary in type and capability such as fixed wing high flying aircraft for

searching, helicopters for tracking, or ground and water vehicles for tasks involving

their respective environment types. Tracking a task in these types of missions involves

acquiring a state estimate of the target, and using it to produce an estimate of the

target’s position at a later time in the mission for revisiting. The trade-off is then

to increase the period between revisits so that the vehicles can perform other tasks,

while ensuring (with sufficiently high confidence) that the target is where it was

predicted to be when it is revisited. By optimizing the assignment, tasks will be

tracked more efficiently and the vehicles will be able to handle more tasks and search

the environment more effectively.

1.2 Literature Review

Many different methods exist that can be used by autonomous agents to distribute

tasks amongst themselves from a known task list. Some involve centralized planning

systems [14–21] in which vehicles communicate their situational awareness (SA) to

a centralized server. With this information, the server can generate a plan for each

vehicle and distribute it to the entire fleet. These types of systems are useful since

they place much of the heavy processing requirements safely on the ground, making

the vehicles smaller and cheaper to build. They also benefit from having a single SA

in which the server can quickly generate plans for the entire fleet and react to new

information as it arrives. On the other hand, this may force the vehicles to remain in

22



constant communication with a specific area in the environment (to stay in contact

with the central planner), reducing the possible mission ranges and creating a single

point of failure. The assignment algorithm can also be computationally intensive for

large fleets and may not scale well.

Decentralized approaches have thus been developed by instantiating the central-

ized planner on each vehicle in order to increase the mission range, and remove the

single point of failure [22–26]. These distributed methods can reduce the computa-

tional costs and add increased flexibility, however, they often require perfect com-

munication links with infinite bandwidth since each vehicle is assumed to have the

same SA. If this is not the case, inconsistencies in the SA might cause conflicting

assignments since each vehicle will be performing the centralized optimization with

a different information set. Thus, decentralized algorithms generally make use of

consensus algorithms [27–34] to converge on a consistent SA before calculating the

assignment [35]. These consensus algorithms can guarantee convergence of the SA

over many different dynamic network topologies [34, 36, 37], allowing the fleet to

perform the assignment in highly dynamic and uncertain environments.

On the other hand, consensus algorithms can take a significant amount of time to

converge on the SA and can often require transmitting large amounts of data to do so.

This can cause severe latency in low bandwidth environments and can substantially

increase the time it takes to find an assignment for the fleet. Various algorithms

have been developed that attempt to reduce the communication required to ensure

convergence to a conflict free solution. In [38], it is shown that it is possible to filter

out unnecessary information while still maintaining an optimal solution. This both

helps reduce computational load and the amount of communication that is required to

produce an assignment. In [39], communication is reduced by maintaining a local and

global (previously shared) SA. By doing this, each vehicle can compute an assignment

based on each information set, and will communicate only if the assignments differ.

Hierarchical approaches [40–42] can sometimes reduce the communication costs by

forming sub-teams and replacing large networks with small dense communication

areas instead.
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Although the reduction in computation and communication is improved in the

previous methods discussed, a conflicting assignment might not be avoided with an

inconsistent SA. To account for this, the Robust Decentralized Task Assignment

(RDTA) algorithm is proposed in [43, 44]. The algorithm is robust to inconsistencies

in the SA by making use of a two stage optimization process. In the first stage,

each agent creates several candidate plans based on their own SA, which are then

communicated to the rest of the fleet. In the second stage, each agent then optimizes

over the received plans to generate the final assignment. The algorithm is thus able

to reduce the consensus time and communication overhead needed by not forcing the

convergence to a consistent SA to ensure a conflict-free assignment. This algorithm

might still however take a significant amount of time to produce a solution since each

agent must wait to receive the plans generated by all of the members before perform-

ing the final optimization. It also restricts the network types from the algorithms

developed using the consensus approach since each vehicle must be able to pass the

plans in the first stage to every other vehicle at a specific time.

Auction algorithms [45–49] are another method for task assignment that have

been shown to be efficient both in terms of communication and computation [50].

Generally, agents place bids on tasks and the one with the highest bid wins the

assignment. The traditional way of computing the winner is to have a central system

act as the auctioneer to receive and evaluate each bid in the fleet [51–53]. However,

in many cases involving robotic agents, the central system is removed and one of the

bidders acts as the auctioneer [47, 54–57]. Once all of the bids have been collected, a

winner is selected based on a pre-defined scoring metric. In these types of algorithms,

agents bid on tasks with values based solely on their own SA. It is known that each

task will only be assigned to a single agent since only one agent is selected by the

auctioneer as the winner. Because of this, most auction algorithms can naturally

converge to a conflict-free solutions even with inconsistencies in their SA.

The downside of these approaches is that the bids from each agent must somehow

be transmitted to the auctioneer. Similar to the RDTA algorithm, this limits the net-

work topologies that can be used since a certain amount of connectivity is required
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between the agents in order to route all of the bid information. A common method

to avoid this issue is to run the auction solely within the set of direct neighbors of the

auctioneer [58, 59]. However, this can reduce the mission performance by not consid-

ering the rest of the fleet for tasking. Smith and Bullo [60] present an approach that

removes the auctioneer altogether. Each agent calculates the optimal Euclidean Trav-

eling Salesman Problem (ETSP) tour of the tasks and uses it to efficiently transmit

the tasks that are available through the fleet. Although the algorithm can perform

quite well in dynamic environments, it relies on perfect information in the task SA in

order to ensure common ETSP tours throughout the fleet, which may not be possible

in a realistic environment.

Various efforts have been made in the literature to extend the auction class of

algorithms to the multi-assignment case. This is sometimes done by sequentially

auctioning each target individually until there are no remaining tasks left to as-

sign [53, 54, 59, 61, 62]. These methods can provide an easy way to implement a

multi-assignment algorithm, but they can be slow to converge and, depending on

the implementation, may provide poor assignments. Bundle approaches [63–66] have

been developed that group common tasks into bundles and vehicles bid on groups

rather than the individual tasks. By grouping similar tasks, these types of algorithms

will converge faster than their iterative counterparts since a single conflict resolution

will apply to multiple tasks. They will also have improved value in the assignment

since they can logically group tasks that have commonalities. However, difficulties

can arise in the computational cost of enumerating all possible bundle combinations,

and winner determination has been shown to be NP-complete [67], requiring the use

of specialized winner determination algorithms [68–70].

The use of these techniques to perform search and track missions has been de-

veloped over recent years [13, 17, 71–77]. During the mission, a set of tasks will be

identified that the agents must distribute amongst themselves. This list can include

tasks such as tracking and classification of discovered targets, searching a specific

area of the map, or even providing communication support for other agents in the

fleet. In some cases the map is partitioned into separate search zones while vehicles
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are tasked to enter the area and execute some pre-defined search maneuver [78–81].

These algorithms can either store canned paths, or compute them online to optimally

cover the area to be searched. The quality of the overall search however depends

heavily on the partitioning of the map. A finer partition means that the value of

searching a given area is more accurately known and the search is more efficient.

Conversely, as the number of partitions is increased, the assignment can become in-

creasingly difficult to perform. In other search methods, the map is partitioned into

cells over which there is a probability distribution of targets [82–84]. A transition

model of the targets is kept and used to model their movement between cells. The

map can then be efficiently searched by maximizing the vehicle trajectories over the

probability distributions. This however, causes coupling between the assignment and

the path generation algorithm, making it difficult to find a proper solution [85]. To

add to this difficulty, search regions can be very large and complex, causing inter-

mittent and noisy communication with highly dynamic network topologies. Because

of this, much of the literature for these types of missions has focused on enforcing

strict network topologies such as a fully connected network [24, 64, 75, 86], a static

connected network with routing capability [43, 53], or sometimes the assignment is

simply done within a local sub-network [58, 59].

1.3 Objectives

The objective of this thesis is to develop a set of decentralized task assignment al-

gorithms that are suitable for search and track missions in large environments with

limited communication. Task assignment for these types of missions should be

1. Flexible to varying network structures and communication linkages

2. Robust to dynamic and uncertain environments

3. Guarantee convergence with an inconsistent SA

4. Provide fast convergence times with optimal or near-optimal solutions
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Figure 1-3: Three unmanned aerial vehicles search for four ground targets (tanks) in
a known environment

Figure 1-4: Vehicles fly in a 3D environment while searching for targets
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The end-goal of this thesis is to implement the developed algorithms into the

CSAT (Coordinated Search, Acquisition and Track) simulation environment (Figures

1-3 and 1-4) developed by Olivier Toupet at Aurora Flight Sciences in conjunction

with MIT. This simulation environment is a multi-vehicle search and track platform

in which any number of ground, water and air vehicles can coordinate to perform

a search and track mission in many different environments. Algorithms can be im-

plemented and executed in real-time to observe their behavior. The goal of the

implementation is to provide a task assignment algorithm robust to varying network

topologies and communication dropouts, that are common in search and track mis-

sions. The algorithm should be efficient in handling a task list much larger than the

number of agents, while being quick to react as new information is inserted into the

environment.

1.4 Overview

This thesis is structured as follows: Chapter 2 presents the consensus-based auction

algorithm (CBAA). This is a single-assignment algorithm that can produce near-

optimal assignments in dynamic uncertain environments. Chapter 3 will extend the

CBAA to the multi-assignment case by first presenting the iterative single-assignment

CBAA, and then developing the more general Consensus-Based Bundle Algorithm

(CBBA). Various mechanisms will also be presented here to account for missions

constraints such as vehicle capability, periodic ground station communication, refu-

eling etc... Chapter 4 will present the implementation of the CBBA in the CSAT

simulation environment, with some analysis of its performance in search and track

missions. Finally, Chapter 5 will conclude the thesis with a summary of the work and

contributions that have been made.
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Chapter 2

Consensus-Based Auction

Algorithm

Cooperation amongst a fleet of robotic agents is necessary in order to improve the

overall performance of any mission. In the previous chapter, two main types of

distributed tasking mechanisms were identified. The first was algorithms that make

use of consensus approaches to converge on the SA, and then perform some type of

optimization to arrive at an assignment [22–25, 35]. These approaches are flexible in

network structure and can easily compute the optimal assignment. The second type

of algorithms discussed are able to add robustness to inconsistencies in the SA, thus

reducing consensus time and allowing for more realistic implementations [43, 54–57].

However, these generally enforced some strict network structure. The objective of this

chapter is to develop a decentralized algorithm that combines properties from both

types of assignment strategies. The algorithm is designed to produce near-optimal

solutions in highly flexible network topologies, but can also quickly converge to a

solution in uncertain and dynamic environments with inconsistencies in the SA.

This chapter will develop the Consensus-Based Auction Algorithm (CBAA), which

was first proposed in [44]. This work extends the latter by further developing the

CBAA as an algorithm for uncertain environments and provides significantly ad-

vanced analysis into its convergence and performance properties. The CBAA is a

distributed and greedy auction strategy with a consensus-like step for conflict reso-
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lution. Instead of passing bids to a single source for evaluation, bids are made and

conflicts are resolved through the network by running a information consensus rou-

tine on a winning bids list. Conflicts can then be resolved without requiring that the

network be connected at a specific instant in time for bidding, and like many auction

algorithms [47, 53, 59], converges regardless of inconsistencies in the SA. The CBAA

is also shown to produce a near-optimal solution while maintaining fast convergence

times.

2.1 Background

This section presents background information for the task assignment problem, as

well as an outline of traditional auction and consensus methods.

2.1.1 Task Assignment Problem

The objective of the assignment problem in this thesis is, given a list of Nt tasks and

Nu agents, to find a conflict-free assignment of tasks to agents that maximizes some

global objective. An assignment is said to be free of conflicts if each task is assigned

to no more than one agent. For each task j, agent i is awarded a score cij if it is

assigned task j. Without loss of generality, this value is assumed to be nonnegative.

The objective of the assignment is to maximize the overall score of the entire fleet.

The problem can be formulated as follows:

max
Nu∑
i=1

Nt∑
j=1

cijxij

subject to ∀i = {1, . . . , Nu} :
Nt∑
j=1

xij ≤ 1

∀j = {1, . . . , Nt} :
Nu∑
i=1

xij ≤ 1

∀i = {1, . . . , Nu}, ∀j = {1, . . . , Nt} : xij ∈ {0, 1}

(2.1)
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Various approaches can be used to solve the above optimization, including Mixed

Integer Linear Programming (MILP) [14, 85, 87], auction algorithms [46, 48], and

network flow methods [21, 88]. An overview of various approaches for both centralized

and decentralized architectures is given in [26].

2.1.2 Auction Algorithms

Auction algorithms are a well established method of addressing the task assignment

problem. In centralized auction systems [45], the value of a task is given by cij =

aij − pj, where aij is the reward of assigning task j to agent i and pj is the global

price of task j. As the assignment progresses, the value of pj is continuously updated

to reflect the current bid for the task. The algorithm is started with any initial

assignment (possibly randomly selected) and a set of initial task prices. Auctions are

done in rounds and continue until all agents are satisfied with their assignment. An

agent is said to be satisfied if it is assigned to the task giving it the maximum value

(maxj cij). If this is not the case, at the beginning of a round, some agent i which

is not satisfied with its assignment is selected and the task that gives it a maximal

reward is determined

j? = argmax
j

aij − pj. (2.2)

If task j? has already been assigned to another agent, the two agents swap tasks.

Once this is done, the price of task j? is increased such that the value cij? is the same

as the second highest valued task in agent i’s list

pj? = aij? −max
j 6=j?

(aij − pj) + ε (2.3)

where ε > 0 is some minimum price increment. This continues until the algorithm

has converged to the final assignment and all agents are satisfied.

The centralized auction algorithm makes use of a global price list pj that each
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agent can edit and has complete access to at all times. In decentralized systems,

agents do not have global access to this information and thus, the price update in

(2.3) is generally not performed. In these cases, the task scores are calculated using

cij = aij − pij, where pij is the local price for agent i to complete task j, and bids

for auctioned tasks are submitted to an auctioneer. In some cases the auctioneer is a

central server [51], while in other cases the role is performed by the agents themselves

[47, 56, 57]. The auctioneer collects all of the bids cij from each agent for a specific

task j, and then selects the winner i? based on the highest bid

i? = argmax
i

cij. (2.4)

This process continues until each task has been assigned.

The purpose of the auctioneer in these decentralized methods is to avoid conflicts

in the assignment. Tasks are sequentially put up for auction and only a single agent

can win a task. However, if the task list is large, auctioning each task individually may

be time-consuming, and furthermore, agents that are not in range at the auctioning

time will never be considered for the assignment. Thus, other decentralized auction

algorithms have been developed that remove the auctioneer in place of a different

conflict resolution approach, and allow tasks to be bid on asynchronously. In the

ETSP algorithm [60], each agent calculates a constant factor approximation of the

ETSP tour of the set of tasks Q = {q1 . . . qNt}, such that tour(Q) = {qσ1 . . . qσNt
}

is the ordered list of tasks along the tour, and σj is the j-th index along the tour.

It is assumed in [60] that each vehicle knows the task locations precisely, such that

each vehicle creates the same tour. During the mission, each agent i greedily selects

the best task curr[i] and calculates the next available (next[i]) and previous available

(prev[i]) tasks on the tour. Since each tour is the same, an agent k (6= i) can observe

upon receiving these values that all tasks in between prev[i] and next[i] along the tour

have already been selected and can thus be removed from consideration. By doing

this, agents can directly resolve conflicts and quickly prune their task lists to reduce

the chance of future conflicts.
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Although the auction algorithms listed above have been shown to efficiently pro-

duce near-optimal assignments, various limitations still exist. Centralized approaches,

along with the auctioneer tasking methods, require that bids be submitted at a given

instant to a specific location. This places a requirement for a fixed network struc-

ture that is connected at a specific time in the assignment. Other algorithms have

removed the auctioneer to allow for flexible network structures, but require consis-

tent task knowledge over the entire fleet in order to guarantee convergence. The

auction approach developed herein uses a consensus algorithm for conflict resolution,

which will be shown to allow flexible network structures without requiring consistent

information over the fleet.

2.1.3 Consensus Algorithms

For decentralized systems, cooperating agents often require a globally consistent SA

[22, 24]. In a dynamic environment with sensor noise and varying network topologies,

maintaining a consistent SA throughout the fleet can be very difficult. Consensus

algorithms are used in these cases to enable the fleet to converge on some specific

information set before generating a plan [35]. Examples of typical information sets

could be detected target positions, target classifications, agent states, and so on.

These consensus approaches have been shown to guarantee convergence over many

different dynamic network topologies [34, 36, 37].

Various methods have been proposed to accomplish this convergence among a fleet

of autonomous agents. Some of them include Kalman-filtering approaches [27, 29]

wherein agents communicate data asynchronously with their neighbors and update

their information set using Kalman filtering techniques. These Kalman-filter-based

approaches provide an adaptive mechanism to incorporate the varying uncertainty

level of each agent’s situational awareness. Agents communicate their information

state ξi continuously until each vehicle converge to some nominal value ξ?. The
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information update equations presented in [29] are be written as

Pi[k + 1] = [(Pi[k] + Q[k])−1 +
Nu∑
j=1

gij[k](Pj[k] + Ωij[k])−1]−1 (2.5)

ξi[k + 1] = ξ[k] + Pi[k + 1] ·
Nu∑
j=1

[gij[k](µj[k]Pj[k] + Ωij[k])−1(ξj[k] + νij[k + 1]− ξi[k])]

where Pi is the covariance of the information state, G[k] is the adjacency matrix

(gij[k] = 1 if a link exists between agents i and j at instant k, and 0 otherwise), Ωij[k]

is the expected value of the process noise νij[k], and µj[k] is the outflow scaling factor,

which is needed for unbiased consensus[29], such that

µj[k] =
Nu∑

i=1,i6=j

gij[k] (2.6)

Other methods perform the information update using a weighted average of the

current and received values [31, 34]

ξi[k + 1] = Wii[k + 1]ξi[k] +
Nt∑
j=1

gij[k]Wij[k + 1]ξj[k] (2.7)

where Wij is the weighting factor for the information transmitted from agent j to

i. This type of update allows for extensions to more generic types of consensus

objectives. For instance, it is also possible to update the information state with the

minimum or maximum value received, and so on.

In this thesis, the consensus idea is used to converge on the assignment value rather

than the situational awareness. A maximum consensus strategy is implemented such

that the current assignment will be overwritten if a higher value is received. By doing

this, the network convergence properties found in the consensus algorithm literature

can be exploited to converge on the assignment.
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Figure 2-1: The CBAA iterates between two phases, the first is the auction process
and the second is the consensus phase.

2.2 Algorithm Development

The Consensus-Based Auction Algorithm (CBAA) makes use of both auction and

consensus algorithms to perform the optimization in (2.1). The algorithm consists of

iterations between two phases (Figure 2-1). The first phase of the algorithm is the

auction process, while the second is a consensus algorithm that is used to converge

on a winning bids list. By iterating between the two, it will be shown that the CBAA

can exploit the network flexibility and convergence rates of decentralized consensus

algorithms, as well as the robustness and computational efficiency of the auction

algorithms.

2.2.1 Phase 1: The Auction Process

The first phase of the algorithm is the auction process. Here, each agent places a

bid on a task asynchronously with the rest of the fleet. By doing this, convergence

is attainable much more quickly than in synchronous bidding strategies where the

agents must wait for the rest of fleet to place a bid before moving to the next task.

Let cij > 0 be the bid that agent i places for task j, and Hi ∈ {0, 1}Nt the list

of available tasks. Two vectors of length Nt that the agents will store and update

throughout the assignment process will also defined. The first vector is xi(t), which

is agent i’s task list at time t, where xij(t) = i if agent i has been assigned to task
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j, and 0 if not. The second vector is the winning bids list yi(t), which is initialized

as yij(0) = 0 for all j. This list will be further developed in section 2.2.2; but it

can be assumed for now that yij is an up-to-date estimate of the highest bid made

for each task thus far. A capability matrix K ∈ {0, 1}Nu×Nt will also be defined

such that element kij = 1 if agent i is capable of performing task j, and 0 if not.

Using the winning bids list and the capability matrix, the list of valid tasks Hi(t) can

be generated comparing the score achieved in completing a task with the associated

value in the winning bids list:

Hi = (ci > yi) ∧Ki (2.8)

where (a > b) returns a boolean vector whose j-th element is 1 if a(j) > b(j) and

zero otherwise, and ∧ represents the element-wise boolean and operation.

The algorithm for the first phase is shown in Algorithm 1. At each iteration,

an unassigned agent i selects a task Ji giving it the maximum score based on their

current list of winning bids

Ji = argmax
j

Hij · cij (2.9)

If the agent has already been assigned a task, this selection process is skipped and

the agent moves to phase 2. It is important to note that once an agent selects a

task, that task is assigned for the remainder of the assignment period. Therefore, if

equation (2.8) returns the zero vector (Hij = 0, ∀j), then either the agent is incapable

of performing the remaining tasks (Ki = 0) or all of the tasks have been assigned and

cannot be outbid (cij ≤ yij, ∀j); thus, the agent is not needed for this assignment.

Otherwise, the agent will select a task and update its xi and yi vectors. If a tie occurs

in finding Ji, an agent can select one of them either randomly or lexicographically

based upon the task identifier.

2.2.2 Phase 2: The Consensus Process

The second phase of the CBAA is the consensus section of the algorithm. In general,

auction algorithms compare task bids head-to-head and the agent with the highest
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Algorithm 1 CBAA Phase 1 at time t:

1: ∀i ∈ {1, . . . , Nu}
2: procedure Select Task(ci, yi(t− 1), xi(t− 1))
3: if

∑
j xij(t− 1) = 0 then

4: Hi = (ci > yi(t− 1)) ∧Ki

5: Ji = argmaxj Hijcij

6: xiJi
(t) = i

7: yiJi
(t) = ciJi

8: end if
9: end procedure

value is the winner. In order to perform the conflict resolution, auction approaches

generally require a fully connected network or a connected network with routing in

order to transmit bids to the auctioneer. In the CBAA, however, agents make use

of a consensus strategy to converge on the list of winning bids, and use that list to

determine the winner. This allows asynchronous bidding and conflict resolution over

all tasks while not limiting the network to a specific structure.

Let G(t) be the undirected communication network at time t with symmetric

adjacency matrix G(t). The adjacency matrix is defined such that gik(t) = 1 if a link

exists between agents i and k at time t, and 0 otherwise. Agents i and k are said to

be neighbors if such a link exists. It is assumed that every node has a self-connected

edge; in other words, gii(t) = 1, ∀i. This section also assumes that the channels are

noiseless and transmitted messages are received one time step after they are sent.

A time step in this case will be defined as a single unit of time in the simulation.

Thus, if a message is passed over link gik, agent k will receive the message at the very

next iteration. An iteration of the algorithm can also be defined as the execution of

both phase 1 and phase 2 of the CBAA and takes one time step to perform. At each

iteration of phase 2 of the algorithm, agent i receives the list of winning bids yi from

each of its neighbors. The consensus update for each task j in the list is then

yij(t) = max
k

gik(t) · ykj(t− 1), (2.10)
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and the assignment for agent i can be updated using

zij = argmax
k

gik(t) · ykj(t− 1)

xij =

 0 if zij 6= i

xij(t) otherwise.
(2.11)

/noindent Note that agent i’s own list is included in the ones received (gii(t) = 1),

and thus, the consensus phase will replace the information state yij with the largest

value between agent i and its neighbors.

If an agent is outbid, it releases that task and goes back to the auction phase of

the algorithm. Ties in determining zij cannot be resolved by random selection, since

tie-breaking should be conducted coherently over the fleet. Two possible ways of

breaking this tie are suggested: 1) intentionally inserting a small random number to

the bid, or 2) tagging the transmission packet with the agent’s identification number

(AID) that indicates who sent the corresponding element yij values and breaking the

tie with it.

Proposition 1. The CBAA will provide the same assignment as the Sequential

Greedy Selection Algorithm. This centralized algorithm recursively finds the high-

est score in the cost matrix and removes the associated row and column (agent and

task) from the list of possible selections

(i?n, j
?
n) = argmax

(i,j)∈In×Jn

cij

In+1 = In \ {i?n}

Jn+1 = Jn \ {j?
n}

Cn+1 = Cn ◦ Ei?n,j?
n

(2.12)

for n ≤ min{Nu, Nt}. The index sets and the cost matrix are initialized as I1 =

{1, . . . , Nu}, J1 = {1, . . . , Nt}, and C1 = [cij] ∈ RNu×Nt. Ei?n,j?
n
∈ {0, 1}Nu×Nt has

zeros in the entries of the i-th row and j-th column, and ones otherwise, while ◦
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denotes the entry-wise product.

Proof. When the algorithm is initialized, each agent calculates the scores for each

task. Of all the scores, there will be one agent i?1 that has the highest score over the

entire fleet for some task j?
1 (i.e. (i?1, j

?
1) = argmax(i,j) cij). Since task selection of

CBAA in (2.9) is greedy, the task j?
1 will be selected by agent i?1. Moroever, agent

i?1 will never be outbid since its bid was the highest value in the fleet and conflict

resolution between agents in (2.10) is a direct comparison. Thus, agent i?1 will have

its assignment from the first iteration of (2.12). Similarly, the next highest score in

the matrix for an agent i?2 6= i?1 and task j?
2 6= j?

1 , will be selected and won, since it

is the next highest score available in the cost matrix. This process continues until

each agent has an assignment which will provide the same results as the Centralized

Sequential Greedy Selection Algorithm in (2.12).

Proposition 2. At the termination of the CBAA assignment, the winning bid lists

for all agents will have converged to the list of scores {ci?1j?
1
, . . . , ci?mj?

m
} with m =

min{Nu, Nt}, which can be generated by the centralized greedy recursion in (2.12),

with appropriate re-indexing.

Proof. Without loss of generality, assume that the agent index is such that i?n = n.

After the first iteration in (2.12), i?1 will have selected task j?
1 and yi?1j?

1
= ci?1j?

1
. From

Proposition 1, it is known that this value will never change since agent i?1 cannot be

outbid. After this value has been transmitted to each vehicle, every yj?
1

will have

reached a steady-state value of ci?1j?
1
. Similarly, the second value from the recursion

will set yi?2j?
2

= ci?2j?
2

and eventually the winning bids list for each vehicle in the fleet

will converge to y = {ci?1j?
1
, . . . ci?mj?

m
}, where m = min{Nu, Nt}. For the case where

agents are arbitrarily indexed, y will converge to an appropriately reordered list.

The above propositions give insight into the convergence of the algorithm which

will be discussed in the next section. Note that if the network is fully connected (each

agent can communicate directly with every other agent), then the order in which tasks

will be assigned in Propositions 1 and 2 will be the same. As the distance between
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agents increases in the network, the conflict resolution time will increase, and the

assignment order might change, however, the final solution will remain the same.

2.3 Convergence

The CBAA is considered to have converged to a solution when m , min{Nu, Nt} tasks

have been assigned to an agent. This section will show that the proposed algorithm

converges for static networks by presenting a finite upper-bound of its convergence

time. It will also suggest the condition under which the algorithm will converge for

dynamic networks. The convergence analysis in this section was performed jointly

with Choi [89].

2.3.1 Worst-Case Convergence Bound

Suppose that a static network is connected; thus, there exists a (undirected) shortest

path length dik < ∞ for every pair of agents i and k. Assuming every edge length is

unity, the network diameter D then becomes

D = max
i,k

dik. (2.13)

The convergence time TC is defined as

TC , min t ∈

{
t ∈ Z+ :

Nu∑
i=1

xij(t) = 1,
Nt∑
j=1

Nu∑
i=1

xij(t) = m

}
. (2.14)

Proposition 3. The convergence time of the consensus-based auction algorithm over

a connected fixed network with diameter D is upper-bounded by:

TC ≤ T̄1 , D ·m. (2.15)

Proof. From the recursion for the centralized assignment (2.12), define a list L? with
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components
{

(i?1, j
?
1), · · · , (i?m, j?

m)
}

where m = min{Nt, Nt} such that

(i?n, j
?
n) = argmax

(i,j)∈In×Jn

cij (2.16)

which is the list of highest valued tasks not previously assigned. After at most D

iterations, information from each agent’s first selection will have been received by

every other agent and at least (i?1, j
?
1) will be assigned. Another maximum of D

iterations will produce the (i?2, j
?
2) assignment. This process is repeated m times until

the entire list is complete. Since the assigned agent and task at each iteration are

removed from the selection lists, either the available agent set or the task set becomes

empty, which means completion of the full assignment. Thus, the convergence time

of the CBAA, TC , for a fixed network is upper bounded by D ·m.

Proposition 3 ensures finite-time convergence of the proposed CBAA over any

static connected network regardless of the scoring matrix C. Note that T̄1 is not

an attainable bound in general, since in the worst case analysis, once a conflict has

passed the length of the diameter, one of those agents will win the bid and that path

will never be used again for conflict resolution. In other words, a conflict in the worst

case can only cross each dik a maximum of one time. Thus, a tighter bound can be

found using the m longest dik values:

T̄2 , max
∑
i<Nu

∑
k>i

dikzik

subject to
∑
i<Nu

∑
k>i

zik = m = min{Nu, Nt}

z ∈ {0, 1}Nu(Nu−1)/2.

(2.17)

It is obvious that T̄2 ≤ T̄1 since dij ≤ D. T̄2 is a tighter bound than T̄1 and easily

computed once a network topology is given. Like T̄1, this bound might still not be

attainable since the conflicts must happen in order along the network for the worst

case convergence to happen. The attainable worst-case convergence time for the case

Nt ≤ Nu can be computed from the following proposition:
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Proposition 4. For a given static graph with Nu nodes, the worst-case convergence

time of the CBAA to reach a conflict-free assignment can be solved with the following

0-1 Linear Program

T̄3 = max
zk
ij

Nt∑
k=1

dijz
k
ij (2.18)

subject to

Nt∑
k=1

zk
ij ≤ 1, ∀i 6= j ∈ [1, Nu] ∩ Z (2.19)

∑
ij:i6=j

zk
ij = 1, ∀k ∈ [1, Nt] ∩ Z (2.20)

∑
i6=j

zk
ij −

∑
m6=j

zk+1
jm = 0, ∀j < Nu, ∀k < Nu (2.21)

zk
ij ∈ {0, 1}. (2.22)

Proof. First, note that if the constraints in (2.21) are relaxed, the optimization (2.18) -

(2.22) will give the same solution value as T̄2, since it selects the m longest edges while

avoiding multiple selections. Therefore, T̄3 ≤ T̄2. In the worst case, a maximum of m

conflicts should be resolved sequentially, and this happens when agent i∗2, in recursion

(2.16), realizes that it is outbid by i∗1. This means that i∗2 should be one of the agents

that is separated from i∗1 by D. Likewise, in the worst case situation, i∗n+1 should be

one of the agents that were outbid by i∗n on task j∗n. This relation corresponds to the

set of constraints in (2.21).

Remark 1. For dynamic networks in which G(t) varies with time, convergence of

CBAA procedure is guaranteed if there exists τ < ∞ such that

W(t) = G(t) ∪G(t + 1) ∪ · · · ∪G(t + τ − 1) (2.23)

is connected ∀t. Moreover, the convergence time is upper bounded by τ ·min{Nu, Nt},

since any information about confliction is transmitted within τ .
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2.3.2 Probabilistic Bound for Static Networks

Although the upper bound on convergence shows that the algorithm is guaranteed to

converge in finite time, the actual worst case scenarios are very unlikely to happen.

For instance, the conflicts must arise in such a way that they never happen at the

same time, are always at least located at the end of the longest remaining path,

and after each conflict resolution, another conflict begins afterward with one of the

previously conflicted agents. In practice, it would make more sense to look at the

expected value and the probabilistic deviation of the convergence time instead of the

worst-case value. The probabilistic bound of the convergence time will be defined as

T̄P = T̂C + κσ(TC). (2.24)

where T̂C and σ(TC) denote the estimates of the expected value and the standard

deviation of the convergence time respectively. κ > 0 indicates the confidence level; for

instance, if the convergence time is normally distributed and T̂C is the true expected

convergence time, κ = 2.0 ensures that the convergence time will be less than T̄P with

probability 97.5%.

This work assumes that the average convergence time can be well approximated

with the following form:

T̂C = D̂ · m̂e, (2.25)

inspired by the expression of T̄1 = D ·m. The degree of validity of this assumption

depends on the actual cost map, but it will be verified that this approach provides a

sufficient estimate of the actual convergence time.

One reasonable choice of D̂ is the average distance between two agents Davg,

computed by

Davg =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1

dij. (2.26)

Suppose that there exists a total of m̂e tasks in conflict at time 0, and also that one

conflict is resolved on average every Davg time steps; then, it will take Davg · m̂e time

steps until all the conflicts are resolved. In this reasoning, the average number of
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initial conflicts is the same as the number of conflicts that is resolved sequentially.

Thus, this thesis estimates m̂e by quantifying the average number of initial conflicts

over the fleet. Assuming no prior information about the cost map, the average number

of conflicts over the fleet with size Nu can be expressed as

mavg =
Nu∑
k=2

ηk

(
Nu

k

)
1

Nk−1
t

(
1− 1

Nt

)Nu−k

. (2.27)

where ηk = 1 + 1/Nk−2
t . The index k denotes the number of agents in conflict on

a single task, while ηk represents the number of equivalent pair-wise conflicts for a

single k-tuple-wise conflict. For instance, if 3 agents are in conflict on a single task, on

average 1/Nt additional conflicts should be resolved after the initial conflict has been

cleared. The binomial expression
(

Nu

k

)
represents the total number of k-tuples, and

the remainder of the summation shows the probability that a given k-tuple can be in

conflict over Nt tasks. With Davg and mavg, the estimate of the expected convergence

time for a static graph is written as

T̂C = Davg ·mavg. (2.28)

The standard deviation of the convergence time can be derived by figuring out

the standard deviation of the distance between agents and of the number of conflicts

to resolve. The standard deviation of the distance can be empirically computed as

σd =

√ ∑
ij:i6=j d2

ij

Nu(Nu − 1)
−D2

avg. (2.29)

Regarding the variance of the number of conflicts to resolve, it is exploited that the

number of effective conflicts me is bounded below by zero and bounded above by

Nt. Considering the possible skewness of the distribution of me, one estimate of the

standard deviation is

σm =
min{mavg, Nt −mavg}

2
(2.30)

where the factor 2 represents the 95% confidence interval for a normal distribution.
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Assuming that the distance between agents is independent of the number of conflicts

to resolve, the variance of the convergence time becomes

σ(TC) =
√

σ2
dσ

2
m + σ2

dm
2
avg + σ2

mD2
avg. (2.31)

2.3.3 Convergence with Inconsistent Information

For simplicity, assume that the agent states are perfectly known and that the only

sources of error are in the task states. Assume pij is some parameter of task j

(e.g. location of target) estimated by agent i that is used to calculate c̄ih such that

c̄ij = f(pij). Let C̄ be the scoring matrix containing the local scores

C̄ =


c̄11 c̄12 . . .

c̄21 c̄22 . . .
...

...
. . .

 (2.32)

Using proposition 1, and interchanging C with C̄, the same analysis can be done

to arrive at the final CBAA assignment. Thus, even with a scoring matrix based

on inconsistent data, the algorithm is still guaranteed to converge to a conflict free

solution. Inconsistencies do however affect the optimality of the final solution and

the trade-off becomes initial consensus on the situation awareness versus the overall

value of the assignment. The same argument extends to the case where the agent

states are also unknown as well.

2.4 Performance

This section will analyze the performance of the CBAA solution against the optimal

solution. Due to Proposition 1, the solution to CBAA is the same as that to Se-

quential Greedy Selection Algorithm. It will be shown that the objective value for

the sequential greedy solution, and thus the CBAA solution, is at least 50% of the

optimal objective value. A more practical expected performance level of CBAA will
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also be derived for some important abstractions. Performance bounds in this section

were contributed by Choi [89].

2.4.1 Worst-Case Bound

The actual performance of the CBAA compared to the optimal solution depends on

what the scoring matrix looks like. The worst-case bound considers the worst possible

performance of CBAA over all score matrix C ∈ RNu×Nt
+ .

Proposition 5. CBAA guarantees 50% optimality:

OPT ≤ 2 ·CBAA (2.33)

where OPT and CBAA are the objective values from the optimal solution and the

CBAA solution, respectively.

Proof. First, note that the solution to the CBAA is the same as the centralized greedy

assignment as in Proposition 1. Thus, if a performance bound can be found with the

the centralized greedy assignment algorithm, then the same bound can be used for

the CBAA. Without loss of generality, assume that the centralized greedy method

assigns tasks in such a way that:

xij =

δij, if max{i, j} ≤ m

0, if max{i, j} > m

(2.34)

where m , min{Nu, Nt} and δij is the Kronecker delta, and

cii > cjj, if i > j. (2.35)

In other words, agent i is assigned task i that provides greater local reward than agent

j who is assigned task j. This assumption does not reduce generality, since the agent

and task indexing can always be reordered to satisfy the above conditions. With this,
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the objective value for the centralized greedy, or equivalently CBAA, solution is

CBAA =
∑

i

cii. (2.36)

Because each agent selects its task in a greedy way given the selections of its prece-

dents, the following inequalities should be satisfied for the greedy solution:

cii > cij, ∀i, ∀j > i

cii > cji, ∀i, ∀j > i.
(2.37)

Notice that the case in which the greedy selection is the farthest from the optimal

solution, the scoring matrix will look like

cij = cii − ε, ∀i, ∀j > i

cji = cii − ε, ∀i, ∀j > i,
(2.38)

with a very small ε that satisfies

ε < min
i<m

cii − ci+1,i+1. (2.39)

Now let each agent try to improve its reward by selecting another task. Because

the assignment should be conflict-free, if one agent selects a task, then the agent

which originally took that task should select another one. Because of (2.37), an agent

can improve its individual reward by choosing a task with a lower index, while (2.38)

leads to an ε decrease of the individual reward for the agent who selects the higher-

indexed task. Note that the greatest performance enhancement is accomplished by

the following strategy:

j?
i =

 m− i + 1, if i ∈ [1, m]

∅, otherwise,
(2.40)

which leads agent i with i < bm/2c to select a higher indexed task, and agent i with
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i ∈ [dm/2e+ 1, m] to select a lower indexed task. This gives the objective value:

OPT =

bm/2c∑
i=1

(cii − ε) +

dm/2e∑
i=bm/2c+1

cii +
m∑

i=dm/2e+1

(c(m−i+1),(m−i+1) − ε)

= 2×
bm/2c∑
i=1

(cii − ε) +

dm/2e∑
i=bm/2c+1

cii

≤ 2×
m∑

i=1

cii = 2 ·CBAA.

(2.41)

Thus, 50% optimality is guaranteed for the CBAA.

Remark 2. The 50% performance lower bound is not a weak bound since it can be

achieved in the following example:

C =

 1 1− ε

1− ε ε

 . (2.42)

with small ε. The CBAA solution for which agent k selects task k for k = 1, 2 results

in the objective value of 1+ε, while the optimal solution for which agent k selects task

3− k gives the objective value of 2− ε. For an infinitesimal ε, OPT = 2 ·CBAA.

2.4.2 Expected Performance

Proposition 5 suggests that the CBAA solution guarantees at least 50% optimality

regardless of the scoring matrix, and this bound is the tightest bound unless further

information about the scoring matrix is provided. In spite of the importance of this

worst-case bound, a more practical value might be the average performance of the

CBAA. This section analytically derives the upper bound of the performance gap,

(OPT − CBAA)/OPT, for two abstract settings. The first considers the case in

which each element of the scoring matrix is i.i.d. with uniform distribution, while the

second deals with a more practical situation where agents and targets are randomly

distributed over a two-dimensional space with the objective of the assignment to

maximize the sum of some time-discounted reward.
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The key principle in deriving the expected optimality gap is the following Propo-

sition:

Proposition 6. If each element of the scoring matrix is distributed i.i.d,

E[Sequence] ≤ E[CBAA] ≤ E[OPT] ≤ E[InfOpt]. (2.43)

where Sequence and InfOpt denote the solution based on the following strategies:

Sequence: agent precedence is defined first; the lower-indexed agent (not reordered

index) greedily selects a task and then the next highest indexed agent greedily selects

while taking conflicts into account.

InfOpt: each agent selects greedily without considering conflict resolution.

In case every score value is i.i.d, the performance of Sequence cannot be better

than that of CBAA on average. Sequence should not depend on specific precedence

order, and thus it represents the performance of a randomly-ordered greedy selection

process, which has no reason to be better than CBAA. Also, since InfOPT considers

a relaxation of the original problem, it should provide an upper bound of the optimal

solution.

Thus, an upperbound of the optimality gap can be obtained as follows:

E ,
E[OPT]− E[CBAA]

E[OPT]
≤ E[InfOpt]− E[Sequence]

E[InfOpt]
, (2.44)

once E[InfOpt] and E[Sequence] are computed.

Uniform scoring matrix

In the case that cij ∼ U [0, cmax], ∀(i, j), the lower and upper bound of the expected

performance of the CBAA solution can be obtained in a closed form. The upper and

lower bounding expectation values can be obtained by using the order statistics. First,

consider the InfOpt case. Each agent selects the largest entry from Nt realizations

of i.i.d samples. Thus, the distribution of each agent’s selection corresponds to Nt-th

order statistics of U [0, cmax]. It is known that the k-th order statistics (k-th smallest
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one) from n samples taken from U [0, 1] has the Beta distribution[90]:

U(k) ∼ Beta(k, n + 1− k) (2.45)

and its mean is

E[U(k)] =
k

n + 1
. (2.46)

In the InfOpt case, each agent independently selects the Nt-th order statistics

from its list of rewards. Thus, the expected performance is simply the sum of each

agent’s expected performance:

E[InfOpt] = mE[cmaxU(Nt)] = mcmax
Nt

Nt + 1
= mcmax

[
1− 1

Nt + 1

]
(2.47)

where m = min{Nu, Nt}.

On the other hand, in the Sequence case, the expected performance of i-th

agent is the expected value of the largest order statistics out of (Nt − i + 1) samples.

Therefore,

E[Sequence] = cmax

m∑
i=1

Nt − i + 1

Nt − i + 2

= cmax

m∑
i=1

(
1− 1

Nt − i + 2

)
= mcmax − cmax

m∑
i=1

(Nt − i + 2)−1.

(2.48)

Thus,

1− 1

m

m∑
i=1

(Nt − i + 2)−1 ≤ E[CBAA]

mcmax

≤ E[OPT]

mcmax

≤ 1− 1

Nt + 1
, (2.49)
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which leads to

E[OPT]− E[CBAA]

E[OPT]
≤ 1−

1− 1
m

∑m
i=1(Nt − i + 2)−1

1− 1
Nt+1

=
1

Nt

+
1

m

(
1 +

1

Nt

) m∑
i=1

(Nt − i + 2)−1 (2.50)

, Eu. (2.51)

Figure (2-2) plots Eu when Nt = m for different Nt values. It is found that the

expected optimality gap of the CBAA will never exceed 15%. Also, in the case that

Nt � 1, Eu can be approximated as

Eu ≈
1 + log m

m
. (2.52)

Numerical experiments in section 2.6.1 will validate the use of Eu as an indication of

the average performance of the CBAA.

Uniformly distributed agents and targets

Consider the situation where Nu agents and Nt targets are uniformly distributed over

a two-dimensional space [0, L] × [0, L], and the goal is to assign agents to target to

maximize the sum of each agent’s time-discounted reward. In this case, the distri-

bution of each element in the scoring matrix is i.i.d, thus, a similar analysis as the

previous section can be done to derive the performance bound of the CBAA in this

setup. The first step is to derive the probability density of each entry of the scoring

matrix:

cij = c0 exp(−rij/r0) (2.53)

where C0 and r0 are constants.

If the probability density function (pdf) of rij is known, the pdf of cij can be
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Figure 2-2: Optimality Gap for the uniformly distributed cij.

expressed as

fC(c) =


r0

c
fR (−r0 log(c/c0)) , if c ∈ [c0e

−
√

2L/r0 , c0],

0, otherwise,

(2.54)

where fR(r) is the pdf of the distance between an agent and target (indices are

omitted to avoid confusion). Since the positions of an agent and target have uniform

distribution, the coordinate difference of x and y have the triangular distribution:

fX(x) =


1
L

(
1 + x

L

)
, if x ∈ [−L, 0]

1
L

(
1− x

L

)
, if x ∈ [0, L]

0, otherwise,

(2.55)
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Figure 2-3: Probability density for the score value for the case with uniformly deployed
agents and targets

and fY (y) has the same form. The pdf of r is related to the pdfs of x and y as follows:

fR(r) =

∫ 2π

0

fX(r cos θ)fY (r sin θ)dθ. (2.56)

It can be shown that fR(r) can be derived as a closed form:

fR(r) =


r

L2

[
2π − 8r

L
+ 2r2

L2

]
, if r ∈ [0, L]

r
L2

[
4(sin−1 L

r
− cos−1 L

r
) + 8(

√
r2

L2 − 1− 1) + (4− 2 r2

L2 )
]
, if r ∈ [L,

√
2L]

0, otherwise.

(2.57)

Figure 2-3 depicts fC(c) with c0 = 1 for five different values of r0: L/4, L/2, L, 2L, 4L.

Given fC(c), the k-th order statistics out of i.i.d samples of size Nt is represented
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Figure 2-4: Upper bound of the optimality gap for the case with uniformly distributed
agents and targets in two-dimensional space

as

fC(k)(c) = Nt

(
Nt − 1

k − 1

)
FC(c)k−1(1− FC(c))Nt−kfC(c). (2.58)

Figure 2-4 illustrates the upper bound of the optimality gap, 1−E[Sequence]/E[InfOpt],

in the case that r0 = L for different values of n = Nt = Nu. It can be seen that the

performance of the CBAA provides less than a 9% optimality gap, and that the gap

becomes smaller as the problem size increases. Numerical simulations in Appendix

A will confirm that the actual optimality gap (OPT−CBAA)/OPT is within the

predicted upper-bound.

2.5 Convergence Criteria for Dynamic Scoring

The CBAA was presented using a static scoring system. This means that a snapshot

of the environment is taken at the start of the assignment period, and scores are

calculated under the assumption that they will remain fixed for its duration. In a
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dynamic environment, however, by the time a conflict has been resolved the actual

task scores might be much different than the ones calculated at the beginning of the

assignment period. In this case, assuming a fixed scoring matrix might cause the

agent to select a task that is no longer the best choice. By ignoring these effects, the

performance of the mission will be subject to increasing degradation as task values

become outdated in the mission.

Consider the impact of updating the scoring matrix C with new information during

the assignment. From (2.12) we know that the agent with the highest possible bid

(the maximum cij ∈ C) will be assigned its desired assignment. However, if the

scoring matrix is not fixed, no guarantee can be made that the current highest value

cij(t0) will still be the highest value at some time t1 > t0. This might cause churning

as the agents continuously outbid each other as fluctuations occur in the scores,

significantly extending the convergence time. In some extreme cases, the algorithm

may not converge at all. There is thus a need to incorporate a scoring mechanism

that can handle this dynamic update.

Proposition 7. The CBAA will converge to a conflict free assignment while utilizing

a dynamically updated scoring matrix provided that following criteria in the scoring

mechanism are met:

i) cij(t1) > ckj(t1) =⇒ cij(t2) > ckj(t2), ∀ t2 > t1, ∀k, (2.59)

ii) cij(t1) ≥ cij(t2), ∀ t2 > t1 (2.60)

Proof. The first criterion states that if an agent can outbid another at any time

t1, then it can always do so, while the second states that an agent’s bid must be

monotonically non-increasing. At some time t1, the highest possible single assignment

score max(i,j) cij(t1) and corresponding assignment pair (i?, j?) can be found. With

(2.60) satisfied, the bid’s score is the highest it will ever be and it follows from (2.59)

that the bidding agent will not be outbid at any time t2 > t1. Thus, that agent

and task are now assigned and the row and column (i?, j?) can be removed from the

scoring matrix. This process can be continued as in (2.12) to create a list of highest
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valued assignments. From here, the proof of convergence in proposition 3 follows.

It should be noted that if (2.1) was changed to a minimization problem, (2.59) and

(2.60) would need to be reversed accordingly.

With these clear criteria for convergence, the problem is now shifted to finding a

scoring scheme that can fit this framework. In the case where there is no such scoring

formulation, the static algorithm can still be used and a conflict-free assignment will

still be obtained. It should be noted that the effects of a dynamic environment will

only begin to affect the assignment over long convergence times. This is generally

found in areas with sparse communication where agents have to travel large distance

to resolve any conflicts. In most situations the expected convergence time is fast

(about 2–3 time steps) and the static approximation will be valid.

2.6 Results

Numerical results are obtained to demonstrate the many different properties of the

CBAA algorithm. For comparison, three different algorithms are implemented to act

as benchmarks. The first is the implicit coordination algorithm [43], which given

perfect SA over the fleet, solves the optimal assignment problem (2.1). Although this

approach can obtain an optimal solution, the amount of communication required to

converge on the SA can be very large, and the computational load used to solve the

optimization for the entire fleet can be very large as the number of tasks and agents

increases. Thus, the implicit coordination algorithm is often impractical for imple-

mentation. The second algorithm, which will be called the Greedy Based Auction

Algorithm (GBAA), is similar to the CBAA but does not make use of the consensus

phase. Agents greedily select tasks and resolve conflicts with their direct neighbors

only. This algorithm requires slightly less communication resource per time step than

the CBAA but will converge much more slowly under communication range con-

straints. The third algorithm is the ETSP algorithm developed in [60]. It removes

the auctioneer similarly to CBAA and has a novel message passing system to diminish

the number of conflicts. However, it assumes perfect knowledge of the task locations
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for all agents.

2.6.1 Optimality and Convergence

Monte Carlo (MC) simulations were used to analyze the performance of the CBAA

static assignment algorithm. The number of tasks and agents were each incremented

from 1 to 40, while 500 randomized simulations were performed in each case. For

each simulation, random networks were created by forming a random spanning tree

(RST) over the fleet of agents using [91], and then adding varying amounts of random

links to the network. It was assumed that a very large and randomized simulation

set would provide a reasonable distribution over all possible networks. Values of cij

were randomly sampled with uniform distribution over [0, 100]. The benchmark used

for comparison was the implicit coordination algorithm [20].

Figure 2-5 shows the results of the simulations with the x and y axis defined by

Nt and Nu, respectively. The z axis indicates the percent deviation from the optimal

solution. These results show that the deviation is maximum when the number of

agents and tasks are the same (Nt = Nu), and in the worst case it deviates less than

6% from the optimal solution. Figure 2-6 shows the diagonal of this plot indicating

the worst-case performance. Notice that the actual optimality gap computed by

simulations is upper bounded by the analytical prediction in Figure 2-2. As the fleet

grows past approximately 10 agents, the performance deviation slowly decreases until

it flattens out near the 35 agent mark. Convergence results were obtained for the

same simulations and can be found in Figure 2-7. The worst-case values are once

again located along the diagonal, and flatten out as the number of tasks and agents

became large.

2.6.2 Probabilistic Bounds

Monte-Carlo simulations were used to validate the probabilistic upper bound of the

convergence time, T̄P ≡ T̂C + σ(TC). Figure 2-8 shows how the probability of the

actual convergence time exceeding T̄P changes as the network size (increasing number
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Figure 2-5: The deviation of the CBAA algorithm from the optimal solution shows a
bound of less than 6%
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Figure 2-6: Diagonal slice of the CBAA performance graph representing the worst-
cases of the values
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Figure 2-7: The convergence of the CBAA algorithm shows that the worst case values
are located along the diagonal and flattens as the number of agents and tasks is
increased

of agents). It is found that this probability decreases as the size of the network grows;

in the case where there are more than 10 agents, T̄P can be regarded as an effective

upper-bound of the convergence time. Figure 2-9 depicts the average values of the

deterministic bound T̄2 and the probabilistic bound T̄P (κ = 2) with respect to the

size of the network. It should be noted that the probabilistic bound is much less

conservative than the deterministic worst-case bound, although in the simulations it

is effectively an upper-bound on the actual convergence time for Nu > 10.

2.6.3 Dynamic Environments

To simulate a dynamic environment, tasks and agents were randomly placed in a

gridded area 2000m × 2000m in size. Tasks were held stationary while agents were

able to move with a predefined constant velocity. The task positions were known to

the agents a priori and their scores were based on the estimated time of arrival. The

communication range of the vehicles was incrementally increased while the mission
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Figure 2-8: Probability of the actual convergence time exceeding T̄P
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objective in (2.61) was used, where Tij is the arrival time for agent i at task j. For

these simulations, Nu = Nt and 100 MC simulations were performed for each data

point.

min
Nu∑
i=1

Nt∑
j=1

Tijxij

subject to ∀i = {1, . . . , Nu} :
Nt∑
j=1

xij ≤ 1

∀j = {1, . . . , Nt} :
Nu∑
i=1

xij ≤ 1

xij ∈ {0, 1}

(2.61)

Figure 2-10 shows the effect of using the static and the dynamic assignment strate-

gies. The x axis is the ratio of the agents’ communication range to the maximum

allowable distance in the grid ( R√
2L

) , where L is the width of the environment. The

y axis indicates the average mission completion time. Results show that if the com-

munication range is greater than some nominal value (normalized at 0.2 or 500m in

this figure), the advantage of updating the scores dynamically during the assignment

is removed. Large communication ranges will diminish the network diameter and de-

crease the convergence time; therefore, the changes in the scoring matrix throughout

the assignment process are minimal, and the static approximation is “good enough.”

In a low communication environment, this is not the case, and the dynamic nature

of the scoring should be incorporated.

Figures 2-11 and 2-12 show the plots for 5 and 20 agents respectively with the

dynamic assignment structure. In each case, results indicate that in low communi-

cation environments, the consensus-based auction algorithm outperforms both the

ETSP and GBAA strategies. As the communication range of the agents is increased,

the network connectivity increases to the point where direct conflict resolution can be

done at each time step between the agents. With perfect communication, the three
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Figure 2-10: The effect of incorporating dynamic tasking to the assignment is bene-
ficial when communication is low and the algorithm takes longer to converge

algorithms converge to approximately the same result. Furthermore, as the number

of agents is increased (from Figure 2-11 to 2-12), the deviation between CBAA and

both ETSP and GBAA strategies is increased for low communication range values.

In this case, CBAA makes use of the added network connectivity as a result of the

increased communication range to resolve conflicts more quickly. This indicates the

benefits of resolving conflicts through the consensus phase instead of through direct

communication only, or by only using the network connectivity to prune unselected

tasks as in the ETSP algorithm.

It should be noted that the deviation from optimal in these simulations were quite

large. This is because time was used as the objective function, so not only was the

final solution sub-optimal, but the time it took to find the solution further degraded

the results. The total time was measured from the time the algorithm was started

until the time at which the last agent arrived at its destination.
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Figure 2-11: By comparing the CBAA to the GBAA and ETSP algorithms, it is
shown to have better performance as the communication range is decreased
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Figure 2-12: The addition of multiple agents to the fleet allows the CBAA to makes
use of the extra edges for faster conflict resolution resulting in closer-to-optimal so-
lutions than those found using the GBAA and ETSP cases
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2.6.4 Environmental Uncertainty

One of the main features of the CBAA algorithm is that it is guaranteed to converge to

a conflict-free assignment, in low communication and highly uncertain environments.

Simulations were performed by placing agents and tasks randomly with a continuous

distribution over a 2000m × 2000m environment. Each agent’s knowledge of the task

locations were perturbed by a random variable (Gaussian distribution with standard

deviations incremented from 0.01L to 0.2L) and the SA error (ESA) was calculated

using the following

ESA =

√√√√ Nu∑
i,k:i6=k

Nt∑
j=1

(pij − pkj)
2 (2.62)

where pij and pkj is the estimated position of task j by agent i and k, respectively.

Scores for each simulation were calculated based on an agent’s estimated distance to a

task and static communication networks were created randomly. 1000 MC simulations

were performed for each data point.

Figures 2-13 and 2-14 show the optimality and average convergence time as a

function of Nt (assuming that Nt = Nu) and the normalized error (ESA√
2L

). The largest

simulated ESA value of 0.5 would then indicate that the average position error of

a task was equivalent to the distance from the center of the grid, to one of the far

corners (∼ 1414m). The results show that the optimality of the final solution degrades

as the level of inconsistency in the SA grows. However, even with a large amount

of error (∼0.5), the average convergence time of the algorithm remains relatively

constant at 3− 3.5 time steps. This confirms that even with large uncertainty in the

environment, the CBAA will converge to a conflict free assignment without changing

any of the convergence performance guarantees and the derived bounds will still hold.

By comparison, both the implicit coordination and the ETSP algorithms would need

to run many consensus iterations to converge on the SA in order to accommodate

their underlying perfect knowledge assumptions.

It should be noted that it Figure 2-14, the convergence time is actually slightly

improving as the situational awareness error is increased. Note that in the case with
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Figure 2-13: Uncertainty in the environment an significantly affect the optimality of
the CBAA algorithm

no error, if each agent has a clear distinct best task from the rest of the fleet (i.e.

each agent is right next to one of the tasks), the algorithm will converge on the

first iteration since each agent will have selected a different task. With large SA

error, each agent’s estimate of a target position is much different and because of

this, the likelihood of a task being the best choice for multiple agents is diminished.

This slightly reduces the number of conflicts on average and the convergence time is

slightly increased.
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Chapter 3

Consensus-Based Auction

Algorithms for Multiple

Assignments

The single assignment algorithm developed in the previous chapter was shown to have

some nice convergence and performance properties. This method will work well when

Nt ≤ Nu since all of the tasks can be completed after a single assignment, but when

Nt > Nu, a number of tasks are left unassigned and might result in an incomplete

mission. Also, it is important that agents have the ability to group common tasks

and perform them together rather than selecting a single task to perform at a time.

This will not only improve efficiency, but reduce cost as well. In this chapter multi-

assignment strategies are developed to enable a small group of vehicles to assign

themselves to a large number of tasks.

Multi-assignment auction methods are presented in [53, 61, 62] that sequentially

place each task up for auction. At each round, a single-task auction is performed and

every agent is able to place a bid. Once the winner is determined, the auctioned task

is removed from the list, and the algorithm continues with the next task. [59] proposes

a similar algorithm, but in this case, the agents themselves act as the auctioneers and

only direct neighbors are able to place bids. This reduces the connectivity requirement

on the network, but may provide poor assignments by not considering the entire fleet
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in the optimization. For large task lists, these sequential auctioning methods may

also take a long time to converge, since each agent can only place a bid for one task

at a time. The solution can further provide poor performance results depending on

the order in which the tasks are auctioned, although in [53], tasks are auctioned in

the order of increasing cost. [54] presents a task exchange mechanism to improve the

performance; however, slow convergence times can still be problematic.

Combinatorial auction algorithms (often named bundle algorithms) have been

proposed in which agents can group common tasks and bid on them as a package.

In general, like the single assignment case, each agent is connected to an auctioneer

who accepts bids and declares a winner. In [64], agents select multiple combinations

of bundles and submit them to an auctioneer for bidding. Bids can either be placed

on every possible combination, or heuristics can be used to prune the number of

combinations if the computational load is too great. Difficulties arise in selecting

the winning bids since agents may not be grouping the same tasks and different bids

may have tasks that overlap. Winner determination in these situations have been

shown to be NP-complete [67]. However, many approximation algorithms have been

developed to solve it [69, 70]. [63] presents an iterative approach in which each agent

submits a single bid to the auctioneer at each round. The auctioneer keeps track of

the winning bids and increases the task prices for the next round. This process is

continued until each agent has submitted a non-conflicting winning bid. The winner

determination problem in this case is much easier with only a single bid from each

agent, but is done multiple times before the algorithm terminates. Although this

method can reduce the computation, many iterations might be required which can

make the algorithm slow to converge to a final assignment.

In this chapter, the single-assignment CBAA is extended to the multi-assignment

case in which all of Nt tasks are assigned to Nu agents. The objective is to maintain

a decentralized approach without forcing a specific network structure as is typical

for most combinatorial auctions. Two algorithms will be developed: The first is the

Iterative Consensus-Based Auction Algorithm. In this approach, agents perform it-

erations of the single assignment algorithm. After each round, the set of tasks that
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was assigned is removed from the task list, the task scores are updated, and the al-

gorithm continues with another assignment iteration until all of the tasks have been

assigned. This algorithm, will be shown to provide faster convergence times than

sequential auction strategies. However, the assignment can be poor by restricting the

size of each agent’s assignment to be the same. The second algorithm that will be

developed is the Consensus-Based Bundle Algorithm (CBBA). This algorithm groups

complimentary tasks into bundles and agents bid on them in tandem. Unlike other

bundle algorithms, however, only a single bundle is created and updated through-

out the assignment. An extension of the consensus phase for the single assignment

algorithm is used to ensure convergence to a conflict-free solution. It will be shown

that the CBBA converges much faster than not only sequential auction algorithms,

but the iterative CBAA algorithm as well. It will also be shown to guarantee 50%

worst-case performance, similar to the CBAA for single assignment. Numerical ex-

periments compared to Prim Allocation (PA) [53], a centralized sequential auction

algorithm, will validate the fast convergence and good performance of the CBBA.

3.1 Iterative Consensus-Based Auction Algorithm

Sequential auctions are a common way of assigning multiple tasks to a group of

vehicles. In these approaches, a single task is put up for auction by an auctioneer,

and each agent submits a bid for it. The agent submitting the highest bid wins the

task and the auctioneer proceeds to the next task in the list. However, if the task list is

large, auctioning each task individually may be time consuming. Furthermore, agents

not in direct communication may either have to route their bids to the auctioneer,

or be excluded from the auction altogether. This might significantly decrease the

performance of the algorithm.

The iterative approach developed in this section involves iteratively solving the

single assignment problem from the previous chapter. Using this approach allows

agents to bid on single tasks, but asynchronously with the rest of the fleet. This

means that they can bid on any task they choose, which will allow faster convergence
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times than the sequential approaches. Furthermore, using the consensus phase, the

algorithm can guarantee convergence with highly variant network topologies.

3.1.1 Algorithm Development

Let cn
ij ≥ 0 be the value that agent i receives for placing task j at the n-th iteration

of the CBAA, and Hi ∈ {0, 1}Nt is the list of available tasks. The iterative approach

in this section does not allow reordering of tasks; thus, cn
ij is the marginal score that

the i-th agent will receive by adding the j-th task to the end of its current assignment

Ai. The assignment Ai is an ordered list consisting of n − 1 tasks and is initialized

as Ai = ∅. The definition of the winning bids list yi(t) in this chapter will remain

unchanged from the single assignment case, but the assignment list xi(t) is refined

such that xij(t) is the agent perceived by agent i to have made the current winning

bid for j. For instance, x12 = 4 would indicate that agent 1 believes that task 2 has

been won by agent 4.

Thus, in the auction process in this iterative algorithms, if agent i bids on task j,

then xij = i and yij = cn
ij. Consensus in this algorithm will be done on both yi and

xi vectors with update equations:

yij(t) = max
k

gik(t) · ykj(t− 1)

xij(t) = argmax
k

gik(t) · ykj(t− 1) (3.1)

In order to ensure termination of n-th iteration, the agents constantly check the

following condition:

|Xik| = n, ∀k (3.2)

where Xik , {j ∈ {1 . . . Nt}|xij = k}. In other words, it is the set of all tasks that

agent i thinks are assigned to agent k, and |Xik| = n indicates that each agent has

been assigned exactly one task for each iteration. If this is true for all k ∈ {1 . . . Nu},

then the assignment is known to have converged. Once this is done, the assigned
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tasks are removed from the list and added to each agent’s assignment:

Ai = Xii, (3.3)

while the scores are recalculated to reflect the current assignment. Note that

cn+1
ij = 0, ∀j ∈ Ai (3.4)

with Ai being the updated assignment list of length n, because a task already included

in the assignment list will not produce any marginal reward.

3.1.2 Convergence

Section 2.3 in Chapter 2 outlines the convergence of the single assignment algorithm.

Taking the result from proposition 3, it is shown that the upper bound on a single

iteration of the algorithm is Dn ·m, where Dn is the network diameter for iteration n

of the algorithm, and m = min{Nu, Nt}. The number of single-assignment iterations

Ni required for convergence can be calculated as

Ni =

⌈
Nt

Nu

⌉
(3.5)

Thus the upper-bound on convergence for the iterative CBAA can be calculated as

TIT ≤
Ni∑

n=1

Dn ·m (3.6)

Although a tighter bound can be obtained by exploiting the 0-1 program in proposi-

tion 4, the above will be sufficient to show convergence.

Comparing this bound with those of the decentralized sequential auction algo-

rithms is straightforward. For the assignment of the n-th task, the bid from each

agent must be routed through the network to the auctioneer taking at most Dn time

steps to arrive. Since the auctioneer must receive all of the bids before making an

assignment, each task will take exactly Dn time steps to be assigned. Thus, the
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convergence time can be calculated as

Ts =
Nt∑

n=1

Dn. (3.7)

In case Dn = D is constant through the assignment, the convergence time for the

sequential auction approach will be

T̄s = D ·Nt. (3.8)

With the same network assumption for the iterative CBAA, and assuming Nt >

Nu ( thus, m = Nu), it can be shown that

T̄IT ≤ (Ni − 1) ·D ·Nu + D · (Nt − (Ni − 1) ·Nu)

≤ Ni ·D ·Nu −D ·Nu + D ·Nt −Ni ·D ·Nu + D ·Nu

≤ D ·Nt

≤ T̄s. (3.9)

where the first inequality is from the worst-case convergence bound in proposition 3.

If Nu > Nt (i.e. m = Nt), the algorithm reduces to a single iteration of the single

assignment algorithm and the same inequality holds. Thus, for a given network, the

convergence time for the CBAA is always upper-bounded by the sequential auction

approach. Moreover, as presented in the previous chapter, the actual convergence time

of a single iteration of the CBAA is much faster than the worst-case bound D·m; thus,

the iterative CBAA will converge much faster than decentralized sequential auction

algorithms. Numerical simulations in section 3.4.2 will verify this.

3.2 Consensus-Based Bundle Algorithm

Many different bundle algorithms have been explored in the literature [63–66]. In

many cases, agents bid on multiple combinations of tasks and participants submit

bids to an auctioneer. The auctioneer can then run an optimization algorithm to
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determine which of the agents have won assignments. Various winner determination

algorithms can be used in order to assign winning bids to the bidders. However, this

process can be computationally intensive for a large number of tasks and agents [67].

Furthermore, each agent must be able to submit bids to the auctioneer, thus, the

network must either be fully connected or connected with sufficient density so that

each agent can route bids through the network to the auctioneer.

This section will develop the Consensus-Based Bundle Algorithm (CBBA). The

algorithm maintains only a single bundle that is updated as new tasks or conflicts

arise. By doing this, computational requirements are kept low and the algorithm

iterations can be executed at much higher rates to improve convergence time. Each

task in the bundle has a separate bid that is based on the improvement in score the

bundle received by adding it. Conflicts in task selection are resolved greedily based on

which bid is the highest for a given task. This is a much simpler winner determination

system than in conventional bundle approaches in which the winner is determined by a

complex optimization [69, 70]. Even with this simplified winner determination system,

the CBBA will still be shown to provide near-optimal assignments. Furthermore, like

the iterative algorithm previously discussed, it makes use of the consensus phase from

the single assignment algorithm for conflict resolution, allowing it to converge under

variable network types. Once again the algorithm is a two phase process. In the

first phase, each agents lists the available tasks and sequentially selects a task to

include into a candidate bundle. The second phase invokes a consensus algorithm

in order to resolve conflicts in the bundle with the rest of the fleet. The algorithm

will be shown to produce faster convergence times and better assignments than the

iterative approach discussed in section 3.1. The algorithm will also be compared

against the Prim Allocation (PA) algorithm [53], and it will be shown to exhibit

faster convergence times and better assignments.

3.2.1 Phase 1: Building a Bundle

Let an agent i’s bundle Bi be defined as the set of tasks that have been added to its

assignment, and path Li be the ordered list of tasks it has been assigned. It should
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be pointed out that tasks in the bundle are ordered based on which ones were added

first, while in the path they are ordered based their location in the assignment. The

marginal score improvement of task j performed by agent i is then

cij =

0, if j ∈ Li

maxn≤NLi
+1 S

Li⊕n{j}
i − SLi

i , otherwise.

(3.10)

where ⊕n denotes the operation that inserts task j into the n-th position of a given

path, and NLi
is the cardinality of Li. It is assumed that the addition of any task to

a bundle will result in a non-negative improvement in score; in other words, cij ≥ 0.

It will also be assumed that the scoring function is submodular (3.11) [92], meaning

that the value of a task does not increase as other elements are added to the set before

it. In other words, a task is either worth more or the same the earlier it is added to

the bundle: for B− ⊂ B+ ⊂ J = {1, 2, . . . , Nt}, it is satisfied for all j ∈ J \B+ that

f(B− ∪ {j})− f(B−) ≥ f(B+ + {j})− f(B+) (3.11)

with a slight abuse of notation in treating a bundle as an unordered set. This does

not lose any generality, because the scoring function f(·) can be defined as a two-step

process that generates an appropriate path, and computes the score associated with

that path. This submodularity will be required for convergence of the algorithm,

and detailed convergence properties will be discussed in section 3.2.4. Also, a simple

modification of the bidding scheme that ensures convergence of the algorithm with a

non-submodular scoring function will be presented as well.

A bundle of tasks Bi is created by adding tasks sequentially until some maximum

path length Nm has been reached, or until Hi = 0, where Hi is defined in (2.8) as

the set of valid tasks, and Ki is the agent’s capability vector. Algorithm 3 shows the

first phase of the assignment process where yi is the winning bids list, xij is the agent

perceived by i to have made the current winning bid for j, and Li is the current path

for agent i.

The function GetUpdatedScores on line 7 of the algorithm takes the current path
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Algorithm 2 Bundle Algorithm Phase 1 at time t:

1: ∀i ∈ {1, . . . , Nu}
2: procedure Build Bundle(xi(t− 1), yi(t− 1))
3: yi(t) = yi(t− 1)
4: xi(t) = xi(t− 1)
5: while length(Li) < Nt do
6: [ci, ni] = GetUpdatedScores(Li)
7: Hi = (cij > yij(t)) ∧Ki, ∀j ∈ {1, . . . , Nt}
8: Ji = argmaxj Hicij

9: if ciJi
> 0 then

10: Bi = Bi ⊕|Bi| {Ji}
11: Li = Li ⊕niJi

{Ji}
12: yiJi

(t) = ciJi

13: xiJi
(t) = i

14: else
15: break
16: end if
17: end while
18: end procedure

Li, and returns for each task j, the increase in value cij the bundle will gain by includ-

ing it, and the index at which the task should be inserted into the current assignment

nij. The location at which the task will be inserted into the path will depend on the

scoring function. Any function that satisfies non-negativity and submodularity can

be used as a scorning function. For instance, this section uses the following scoring

function:

SL
i =

|L|∑
k=1

V k
ij =

∑
λTjk(L)Cj (3.12)

where V k
ij be the time discounted score for agent i along the path L for task j at

index k. λ ∈ [0, 1] is the time discount factor, Tjk(L) is the estimated time agent i

will take to arrive at task j along the path L, and Cj is the static score associated

with performing task j. Since the path is determined to produce maximum score for

a given bundle, the function GetUpdatedScores returns the scoring vector ci whose

j-th element is

cij = max
n


n−1∑
k=1

V k
ij + V n

ij +

NLi∑
k=n

V k+1
ij

 . (3.13)
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This is similar to the cheapest insertion heuristics [93] found in traveling salesman

problems (TSP). Note that the task is inserted into the bundle Bi at the back end of

the list, while the task is inserted into the path Li at the argmax of the right-hand-

side of (3.13). Details of the cheapest insertion heuristic can be found in Appendix

B.

3.2.2 Phase 2: Conflict Resolution

In the single assignment algorithm, agents bid on a single task and release it upon

receiving a higher value in the winning bids list. In the CBBA, however, agents add

tasks to their bundle based on their currently assigned task set. Thus, if an agent

is outbid for a task, it should also release the tasks that were added to the bundle

after it, since they might no longer be the best ones to select. By allowing agents

to outbid earlier selected tasks, this algorithm will be able to achieve higher valued

assignments than the iterative approach previously developed. Releasing the tasks

in this manner can however cause further complexity in the algorithm. If an agent

is able to release tasks without another member selecting it, the consensus update

equations from (2.10) and (2.11) will no longer converge to the appropriate values

since the maximum bid observed might no longer be valid. Therefore, the consensus

phase of the algorithm will need to be enhanced in order to ensure that these updates

are accurate.

In the multi assignment consensus stage, three vectors will be used for consensus.

The first two vectors will be identical to the iterative assignment algorithm developed

in the previous section: 1) the winning bids list yi and 2) the winning agent xi. The

third vector, τi of length Nu, is the time of the last information update from each of

the other agents. Each time a message is passed, the time vector is populated with

τik = tr, ∀k ∈ {k : gik = 1},

τij = maxk∈{k:gik=1} τkj, ∀j ∈ {j : gij = 0}
(3.14)

where k and i are the sender and receiver agents, and tr is the message reception
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Table 3.1: Actions to take based on incoming message parameters
Sender (xi) Receiver (xj) Action for j

i

j if yi > yj → update
i update

k
if tik > tjk → update

else if yi > yj → update
none update

j

j nothing
i reset
k if tik > tjk → reset

none nothing

k

j if tik > tjk and yi > yj → update

i
if tik > tjk → update

else → reset

k

if ki == kj and tik > tjk → update
else if tikj

> tjkj
and tjki

> tiki
→ reset

else if tikj
> tjkj

→ update
else if tiki

> tjki
and yi > yj → update

none if tik > tjk → update

none

j nothing
i update
k if tik > tjk → update

none nothing

time.

When agent j receives a message from another agent i, the x and t lists are used

to determine which agent’s information is the most up-to-date for each task. Once

this is done, a decision is made to either update the current values in the list, reset

them to the default values (xij = yij = 0), or leave them alone. Table 3.1 outlines all

of the possible cases.

The first two columns of the table indicate the agent that each of the sender i

and receiver j believes to be the current winner for a given task. The third column

indicates the action the receiver should take. The agents, upon receiving a message,

verify which of the information states are correct using the table and then take the

appropriate actions. In the table there are four different cases of xi values to consider:

1. it is believed the sender (i) has won the bid

2. it is believed the receiver (j) has won the bid
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3. it is believed some other agent (k) has won the bid

4. it is unknown (none) who has won the bid

If a bid is changed during the second stage, each agent checks to see if any of the

updated tasks were in their bundle, and if so, those tasks along with all of the tasks

that were added to the bundle after them, are released:

Xi = {j ∈ Bi|xij 6= i}

ki = min k ∈ {k|Bik ∈ Xi}

Bi = Bi \ {Bi,ki
, . . . , Bi,|Bi|}.

(3.15)

From here, the algorithm returns to the first stage and new tasks are added from the

task list.

3.2.3 Performance

This section will show that the performance guarantee for the Consensus-Based Bun-

dle Algorithm is within 50% of optimal. To do this, it will first be shown that the

calculation of the optimal solution can be formed as a Traveling Salesperson Problem

(TSP) [94]. It will then be shown that the CBBA developed herein is equivalent

to the Cheapest Insertion (CI) heuristic for solving TSPs [93, 95], which has a well

known bound of 50% of the optimal solution. Details of both the TSP and the CI

heuristic can be found in Appendix B.

Proposition 8. The optimal task allocation of Nt tasks to Nu agents is equivalent

to solving a TSP with edge weights ekj = ck
ij if the agent prior to task j on the tour

(k − 1 nodes separate them) is agent i, and 0 otherwise.

Proof. First, note that if there is only a single agent, the maximum scoring arrange-

ment of tasks is equivalent to a standard maximum TSP with an edge weight

ekj =

ck
ij, if j ∈ Ai

0, j = i

en (3.16)
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where edges from tasks to agents have weights of 0. The individual problem can be

written as a general TSP using

max
Nt+1∑
j=1

Nt+1∑
k=1

ci
kjekj

subject to
Nt+1∑
k=1

ekj = 2∑
δ(S)

ekj ≥ 2, ∀S ⊂ V, S 6= ∅

ejk ∈ {0, 1}

(3.17)

where δ(S) denotes the set of all nonempty subsets of nodes, and V = Ai ∪ {i} is the

list of vertices for agent i and its tasks. ekj = 1 if there is an edge between vertices k

and j.

For multiple vehicles, the optimal assignment is the sum of each of the individual

assignments (3.17) with an extra constraint prohibiting the same task from appearing

in multiple assignments. The assignment can then be written as follows:

max
Nu∑
i=1


NLi

+1∑
j=1

NLi
+1∑

k=1

ci
kje

i
kj


subject to

NLi
+1∑

k=1

ei
kj = 2∑

δ(S)

ei
kj ≥ 2, ∀S ⊂ Vi, S 6= ∅

Nt∑
k/∈Ai,j∈Ai

ei
kj = 0

ei
jk ∈ {0, 1}

(3.18)

where Vi is the list of vertices in agent i’s assignment tour. Notice that if the second

constraint in (3.18) is changed such that it spans the entire vertices set over the fleet

V , then the resulting formulation has the form of a TSP.

When performing the optimization in (3.18) with V , edges need to be added in

between the assignments in order to satisfy the first two constraints. However, the
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Figure 3-1: Optimal Assignment Figure 3-2: Assignment Reordered as
a TSP

third constraint prohibits edges between tasks belonging to different assignments.

The only way to satisfy this is to add edges in between a task from one assignment,

to the agent of another. An example of this is shown in Figures 3-1 and 3-2. From

(3.16), it is known that edges from tasks to agents have zero weight, and thus, the

value of the assignment will remain unchanged. Therefore, solving (3.18) with the

edge constraints listed in (3.16) will provide the optimal assignment.

Proposition 9. The Consensus-Based Bundle Algorithm performs a cheapest inser-

tion heuristic on the assignment; therefore, it guarantees 50 % optimality.

Proof. Let the initial tour be defined by zero-weighted edges between all agents (Fig-

ure 3-3). Let C1 be the initial scoring matrix before any tasks are added to an agent’s

bundle such that c1
ij is the score for adding task j to the first index:

C1 =


c1
11 c1

12 . . .

c1
21 c1

22 . . .
...

...
. . .

 (3.19)

Like in 2.12, there will be some value (i∗1, j
∗
1) for which (i∗1, j

∗
1) = argmax(i,j) c1

ij. It

is also known that Bi∗11 = j∗1 since the bundles are built greedily. With a submodular

scoring function, the task value that other agents have will never be higher than
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Figure 3-3: Initial Tour Figure 3-4: First Insertion

Figure 3-5: Second Insertion Figure 3-6: Third Insertion Insertion

the value in the initial matrix, so it is known that (i∗1, j
∗
1) can never be outbid and

the assignment will always hold. Thus, it can be inserted after i∗1 as a part of the

assignment (See the link from UAV2 to Task1 in Figure 3-4). Similarly, after task j∗1 is

removed, the scoring matrix will be updated to reflect the assignment as C2. The same

process can be followed to find the next highest value and produce the assignment

(i∗2, j
∗
2), which can be inserted into the network next and so on (Figures 3-5 and 3-6).

This iterative process is precisely the cheapest insertion algorithm outlined in [93],

which has a proven lower bound of 50% of the optimal tour. Proposition 8 showed

that the TSP tour was equivalent to the optimal assignment, thus it can be reasoned

that the CBBA will give an assignment no worse than 50% of the optimal one.

Remark 3. While the process in the proof of proposition 9 adds a task one at a
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time, the actual CBBA algorithm may assign many tasks at the same time. However,

the performance guarantee still holds, because there always exists a sequential process

equivalent to simultaneous insertion of multiples tasks.

3.2.4 Convergence

As mentioned in section 3.2.1, it is assumed that a task’s scoring function is sub-

modular. This means that its value does not increase the later it is added to the

plan.

Proposition 10. With a submodular scoring function, the CBBA converges within

T̄B ≤ D ·Nt time steps, where D is the network diameter.

Proof. In the worst case, task bundles are built but only one task is won in the fleet

at a time. This is outlined in Figure 3-11. In it, two agents i and k are separated by

the network diameter D, and are incrementally outbidding each other for successive

tasks. This will cause the most conflicts and force the resolution time to take the

most number of iterations since it must traverse the longest path on the network.

The first conflict will be resolved in at most D iterations (Fig. 3-7). Once this is

done, agent k will release each task in its list and rebuild the bundle (Fig. 3-8). After

another D iterations the newest conflict is resolved an the process is continued for

D ·Nt iterations until the assignment is complete (Fig. 3-10). Thus, the algorithm is

bounded by a T̄B ≤ D ·Nt convergence time.

Without submodularity, this convergence bound could not be guaranteed. Con-

sider the two agents with the initial scoring function for two tasks shown in Figure

3-12. They each select the highest valued task first (A1 = {2} and A2 = {1}), and

then recalculate the scoring function (Figure 3-13). Without the submodularity as-

sumption, the value for the remaining target(s) might be higher than their original

scores. Once the recalculation is done, each agent again adds the next best task to

their bundle. Thus the assignments are A1 = {2, 1} and A2 = {1, 2} while the bids

are y1 = {50, 100} and y2 = {100, 50}. Each agent will win one of the tasks, how-

ever, they will also both lose the first task that they selected in the bundle. Using
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Figure 3-7: Iteration 1 Figure 3-8: Iteration 2×D

Figure 3-9: Iteration 3×D Figure 3-10: Final Assignment

Figure 3-11: Progression of the worst case convergence time of the CBBA across the
network diameter D

the conflict resolution rules developed in section 3.2.2, the agents, having both been

outbid for their first task, will both give up tasks 1 and 2. This will create a cycle in

the bidding and conflict resolution process which can be very complicated and hard

to detect for large fleets. By ensuring that the scoring function is submodular, the

first task selected is always the greatest value and the same cycle will not occur.

Similarly to the iterative CBAA approach, the same reasoning can be used to

show that for a given network, the convergence time of the CBBA is upper-bounded

83



Figure 3-12: Initial Scoring Figure 3-13: Scores after first se-
lection

by that of the sequential auctioning approach:

T̄B ≤ T̄s (3.20)

This bound, however, is very unlikely to be attained. For it to occur, two agents on

opposite ends of the network would need select the same bundle, and each one win

alternating tasks in the list as in Figures 3-11. For fleets of even a small size, the

likelihood of 1) no other agents winning a bid, and 2) only one task being allocated

at a time, is very small. In practise, the expected convergence bound will be much

smaller than this since conflicts can be resolved in parallel and agents will select tasks

asynchronously.

Remark 4. Even in the case that a scoring function is not submodular, the following

simple modification of the algorithm that ensures a monotonically decreasing property

of a bid over time will lead to convergence

cij(t) = min {cij(t), cij(t− 1)} . (3.21)

3.3 Robustness

At the beginning of this chapter, it was stated that in any multi-assignment extension

of the CBAA, the convergence properties of the algorithm should not change. More

specifically, the multi-assignment extension should still guarantee convergence with
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inconsistencies in the SA, and converge to a conflict free solution in dynamic networks.

This section will show that for both the iterative and bundle versions of the CBAA,

these properties still hold.

Proposition 11. If the maximum assignment size Nm is set to 1, then both iterative

CBAA and the CBBA reduces to the single assignment CBAA.

Proof. For the iterative CBAA, this is a trivial result since it uses iterations of the

single assignment algorithm. Each iteration causes the assignment size of every agent

to increase by one. Thus, running the single assignment algorithm once will finish

the assignment with Nm = 1.

In the CBBA, limiting the assignment size will cause the agents to select only a

single task. Task scoring is based on the improvement in score the agent receives,

but if Nm = 1 this value will simply be the task score cij since there will never be

any tasks in the list. Thus, bidding is the same as the single assignment algorithm.

In the consensus phase, an additional vector τi was needed to determine when tasks

were released without being directly outbid (Eq. 3.15). However, this can only occur

for task sizes greater than one, since agents release tasks that were added after a task

that was outbid. Thus, the winning bids list is only updated if the received winning

bid is greater then the current one. This indicates that the consensus phase is the

same as the single assignment case as well, and the algorithms are said to be the

same.

With proposition 11, it is known that for Nm = 1, both multi-assignment ex-

tensions satisfy the CBAA robustness properties. For the iterative approach, it is

trivial to show that this will always be the case for Nm > 1 since it can be argued

that each successive iteration is a new assignment using the single assignment algo-

rithm with a slightly different task list. For the CBBA, proposition 10 showed that

it will converge in finite time. With Nm > 1, conflict resolution happens in parallel

for each task that is bid across the network diameter. If the diameter is changing,

the assignment will not change provided that the network is averagely connected as

stated in (2.23). Similarly with inconsistent information, bids are based on the local
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data set. If the algorithm can converge with Nm = 1, increasing Nm will simply add

more tasks to the parallel conflict resolution process, but the same arguments can be

made for each successive task added to the bundle as was made for Nm = 1. Thus,

the multi-assignment algorithms will both maintain the same robustness to varying

networks and inconsistent SA the single assignment CBAA.

3.4 Results

Monte-Carlo (MC) simulations were performed to quantify the performance, conver-

gence, and computation time of the multi-assignment algorithms. For each simulation,

tasks and agents were randomly placed on a 2000m × 2000m grid. Each task was

given a fixed score of 1000 and the assignment scores for each agent were based on

a time discounted value as in (3.12). Networks were created the same way as in the

previous section, by generating a random spanning tree [91], and then adding varying

amounts of random links to the network. For comparisons, the optimal solution was

calculated by using the implicit coordination algorithm [43]. The algorithm assumes

perfect SA over the fleet and solves the assignment by listing all of the possible task

combinations and solving for the optimal using a MILP. For both the iterative and

bundle versions of the CBAA, numerical results were used to verify their performance,

convergence times, robustness to uncertainty and computation time. Further simu-

lations were done to compare the CBBA with the Prim Allocation (PA) algorithm

[53].

3.4.1 Performance

Figures 3-14 and 3-15 show the performance for the iterative and bundle approaches

respectively. Due to computational limitations with the optimal solution, a receding

horizon approach had to be taken in which the assignment sizes were limited to

Nm = 3. For the iterative approach, the worst case average performance was found

along the main Nt = Nu diagonal. This is the same result from the single assignment

case in the previous chapter. There is also a second ridge along the Nt = 2 ·Nu line.
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This is from the final iteration having Nt = Nu tasks remaining. The assignment

value reaches a maximum of an approximate 10% deviation from optimal. For the

CBBA, the worst case performance was found when Nu � Nt, and had a maximum

average deviation from optimal of 4%.

Simulations were done with Nu = Nt in order to see the value in each algorithm

while changing the maximum assignment size Nm. With Nm = 1 (Figure 3-16), as

was shown in section 3.3, the two algorithms converge to the same solution. Here,

the assignment is better than the 6% bound found in Chapter 2, as the scoring isn’t

based on a random distribution. With the scoring based on a physical distance,

less conflicts will arise on average, leading to more vehicles winning their preferred

assignments. Figure 3-17 shows the same simulations with a horizon size Nm = 5. In

all cases, the bundle algorithm was shown to outperform the iterative approach. This

was expected since the iterative approach essentially forces each assignment to have

the same length.

Finally, the performance of both algorithms were compared to the 50% perfor-

mance bound. Figure 3-18 shows the results from simulations performed in the it-

erative assignment worst-case configuration (Nu = Nt), while figure 3-19 shows it in

the CBBA worst-case configuration Nu � Nt. In both cases the solutions were well

above the bound.

3.4.2 Convergence

To measure the convergence of the respective algorithms, simulations were first per-

formed with a fully connected network. Doing this provided insight into the agent

and task ratios providing the most conflicts. Figure 3-20 shows the convergence for

the iterative approach. It shows that the algorithm converges much slower when the

number of tasks is a multiple of the number of agents (Nt = n ·Nu). This can be seen

in Figure 3-20 as the second ridge of the diagonal has n = 2. This matches well with

result from the single assignment case, since the last iteration of the algorithm is the

case where Nt = Nu. Figure 3-21 shows the equivalent simulations for the bundle

algorithm, and once again shows the worst case to be when Nu � Nt. Simulations
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Figure 3-14: Deviation from Optimal for Iterative CBAA
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Figure 3-15: Deviation from Optimal in CBBA
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Figure 3-16: Deviation from Optimal with Nm = 1
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Figure 3-17: Deviation from Optimal with Nm = 5
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Figure 3-18: Performance Bound in Iterative CBAA Worst Case Configuration (Nu =
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Figure 3-19: Performance Bound in CBBA Worst Case Configuration (Nu � Nt)
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Table 3.2: Computation Time (s) with Nu = 5 and Nt = 20
Nm 1 3 5
iterative 0.007 0.0119 0.014
bundle 0.017 0.0271 0.0549
implicit 0.0122 0.5793 57.719

Table 3.3: Computation Time (s) with Nu = 5 and Nt = 5
Nm 1 3 5
iterative 0.0068 0.0068 0.0068
bundle 0.0164 0.0217 0.231
implicit 0.0093 0.0181 0.0244

Table 3.4: Computation Time (s) with Nu = 20 and Nt = 5
Nm 1 3 5
iterative 0.0316 0.0317 0.0318
bundle 0.0487 0.0579 0.0646
implicit 0.0119 0.0359 0.0586

were thus performed with Nu = 10 and Nt = 30 using network topologies of varying

diameter (Figure 3-22). The CBBA was shown to have a much faster convergence

times than the iterative approach, mostly due to its ability to resolve conflicting tasks

in parallel.

3.4.3 Scalability

One of the main advantages of most auction algorithms over optimal planners is the

efficiency in which assignments can be made. To calculate the optimal solution, the

implicit coordination algorithm must first list all permutations (with some pruning),

evaluate them, and then perform the optimization. Tables 3.2 through 3.4 show the

computation times used to execute the different algorithms. For low horizons, or a

small number of tasks, the tables show that the optimal solution can easily be found.

However, when the task list is large, the optimal solution scales very poorly with the

number of tasks and the benefit of using an auction strategy to minimize computation

becomes apparent. Figures 3-23 and 3-24 plot the convergence time as a function of

the number of tasks for Nm = 3 and Nm = 6 respectively. Note that the plots are on

a log scale.
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Figure 3-20: Convergence Time for Iterative CBAA D = 1
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Figure 3-21: Convergence Time for CBBA with D = 1
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Figure 3-22: Comparison of the Convergence Times with the Upper Bound as a
Function of the Network Diameter for Nu = 10 and Nt = 30

3.4.4 Comparisons with the Prim Allocation Algorithm

The Prim Allocation (PA) algorithm [53], is an sequential centralized auction strat-

egy. Each agent creates a minimum spanning tree (MST) and bids on the task that

is closest to any of the nodes in the assignment. This process continues until all of

the tasks have been assigned. Tasks are then ordered through the tree by perform-

ing a depth-first search (DFS) [96]. The algorithm is designed to minimize the total

distance traveled by the fleet to accomplish the tasks, however, other heuristics have

been developed in [62, 97] that can be used as well. As previously stated, the PA al-

gorithm is sequential, thus the convergence of both the iterative and bundle strategies

presented here are upper-bounded by the PA.

Simulations were done to compare the total distance traveled by the vehicles using

the PA algorithm as well as the CBBA. For the latter, the distance wasn’t minimized

outright. However, the scoring function in (3.12) is based on the agent’s distance to a

task. This is a good example of how using generic scores when developing algorithms
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Figure 3-23: Computation Time with a Maximum Assignment Size of 3

0 5 10 15 20
10−3

10−2

10−1

100

101

102

103

# Tasks

C
om

pu
tti

on
 T

im
e 

(s
)

Average Computation Time with N
u
 = 5 and N

m
 = 6

 

 

Implicit
Iterative
Bundle

Figure 3-24: Computation Time with a Maximum Assignment Size of 6

94



can provide more flexibility in terms of objective functions. Figures 3-25 and 3-26

show the total distance traveled with Nu = Nt and Nu = 5, respectively. In both cases,

the CBBA provides a solution in which the fleet travels less distance than the PA

method. Furthermore, convergence time for the PA algorithm was compared against

the CBBA using a fully connected graph in Figure 3-27. Since the PA algorithm

assigns each task one at a time, the algorithm will be slow for a large number of

tasks. This demonstrates the benefit to resolving conflicts in parallel and allowing

agents to bid on tasks asynchronously.
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Figure 3-25: Distance Needed for Assignment with Nu = Nt
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Figure 3-26: Distance Needed for Assignment with Nu = 5
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Figure 3-27: Convergence Comparison with Nu = 5
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Chapter 4

Implementation for Search and

Track Missions

Search and track missions have been studied extensively in recent years [13, 17]. In

these types of missions, a fleet of autonomous vehicles is given a known or unknown

environment that it must search for a specific set of targets. Upon discovery of a

target, the vehicles must continue to search the remaining environment while keep-

ing track of the targets that have already been found. There is thus an inherent

trade-off between how much search is done and how well the discovered targets are

tracked. Vehicles might also be subject to limited fuel, limited capability, and lim-

ited communication resources, which can further increase complexity in the problem

formulation.

Various methods exist to enable a fleet of autonomous agents to search a given

environment. These include pre-generated search paths [78–81], area coverage algo-

rithms [98–100], formation flying [77], and cooperative methods [17, 76]. In many

cases, the environment is discretized into cells over which there is a probability distri-

bution of targets [82–84]. Task assignment algorithms are used to allocate track tasks

and, in some cases, divide search regions among the vehicles. However, search regions

are generally very large and complex. Communication is generally intermittent and

noisy, and the network structure can be highly dynamic. At any given instant, the

network might even be split into many disconnected sub-networks. Because of this,
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much of the literature for these types of missions has focused on enforcing strict

network topologies, such as a fully connected network [24, 64, 75, 86], or a static con-

nected network with routing capability [43, 53]; other times the assignment is simply

done within a local sub-network [58, 59].

The objective of this chapter is to detail the implementation of a task assign-

ment algorithm that will provide the network flexibility that is needed for complex

search and track missions. The algorithm is implemented on the CSAT (Coordinated

Search, Acquisition and Track) Simulation test-bed that was developed by Aurora

Flight Sciences (AFS) in conjunction with MIT. This sophisticated simulation envi-

ronment allows developers the opportunity to implement real-time algorithms in a

controlled environment that can emulate many of the real-world complexities that

may exist. Currently, the simulation uses the Robust Decentralized Task Assignment

(RDTA) algorithm to coordinate vehicles in the environment. In this chapter, a con-

tinuous Consensus-Based Bundle Algorithm (CBBA) will be described and compared

against RDTA. Simulations show that the CBBA provides quicker response times

to newly discovered tasks, as well as the ability to successfully keep track of more

discovered targets. It will also be shown that the CBBA has a better mission perfor-

mance for combined search and track, and is able to make efficient use of increased

communication to improve this value.

4.1 CSAT Mission

The CSAT mission involves three main tasks: search, acquisition, and track. A group

of unmanned vehicles cooperate and periodically perform revisit tasks for discovered

targets, broad-area searching that can include map building if the environment is

unknown, and close-in viewing of specific targets for classification. In these situa-

tions, communication can also be of concern since the environments that are being

searched can be highly cluttered and may span very large distances causing intermit-

tent communication links. Bandwidth will also be limited which will further reduce

the ability for agents to communicate. Thus, it is necessary that the algorithms that
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Figure 4-1: CSAT Mission Architecture - image taken from [2]

are developed be robust to these highly unpredictable scenarios. Furthermore, the

fleet should perform the mission in a decentralized fashion to improve the coverage

area and to avoid single points of failure.

Figure 4-1 shows the CSAT onboard architecture that is used by the vehicles. A

mission manager takes in the mission information state and, possibly, information

from a human interface, and generates a list of tasks with associated completion

times. The cooperative planner takes this list and cooperates with the other vehi-

cles to agree on an assignment, and creates feasible trajectories to ensure maximal

performance. The planner can take into account high valued search areas, obstacles,

vehicle dynamics, and refueling constraints when generating the assignment and tra-

jectories. A list of way-points and arrival times is then sent to vehicle controllers to

execute the plan. A vision module is used as the vehicle’s main sensor and is located

on a separate processor. It relays target estimates back to the mission manager to

complete the loop.
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Figure 4-2: CSAT Simulation Architecture

4.1.1 Simulation Environment

The full CSAT simulation architecture is shown in Figure 4-2. It is divided into

three separate areas: the onboard modules, the 3-D environment, and environment

monitoring and control modules.

Onboard the individual vehicles there are three separate modules, the first of which

is the onboard planning module (OPM). The OPM provides high level autonomy to

each vehicle. It communicates with the other vehicles to coordinate assignments

and share information, while passing its state information to the ground station for

monitoring. It should be noted that the ground station is completely passive and is

not used for anything other than viewing the mission progression. Trajectories are

created in the OPM and passed to the autopilot module (APM) for execution. The

autopilot is based on guidance and navigation algorithms developed in [101], with

dynamics based on a simple double integrator with rate limits. The APM can also

act as an interface to commercial autopilots for flight testing or hardware in-the-

loop simulations (HILSim). Finally, the OPM uses a vision module (OVM) as its

main sensor for target detection and tracking. The OVM module has two modes of

operation. In the emulation mode, the module receives target ground truth from the

target emulator and passes state estimates to the OPM if the target is within the
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field of view. This allows for a controlled environment to test the effects of specific

levels of noise and error in the estimates. In the second mode, sensor images are read

in from the 3D environment and vision software is used to extract target estimates.

The second section of the CSAT simulation environment is the OpenGL 3D en-

vironment that the agents and targets have the option of plugging into (Figures 4-3

and 4-4). The environment reads state information from the APM and TEM mod-

ules, and generates the visualizations of each in 3D. Multiple viewing modes exist,

including a sensor footprint view which can be used to extract images as input to the

OVM. If hardware testing is needed, it is also possible to use a real camera pointed

at the screen for image extraction.

Finally, the last area in the simulation is for environmental control and monitoring.

Here, three modules are presented that emulate the environment for the onboard

algorithms. The first is the communication emulator (COM). All messages between

agents are routed through this module. Based on the location of the agents, the

emulator adds a specific amount of delay to each message that is calculated using the

vehicle transmission power, range and channel bandwidth. Noise and packet loss can

also be added, however for these simulations, it was assumed that upon transmission,

messages are received without error. If there is no direct connection between agents,

the emulator tries to route the message using an A? search algorithm [102] through the

fleet to simulate broadcasting. If no route is available, the message is not sent. Targets

in the simulation are controlled from the target emulator (TEM). They can either

start at random or predefined locations, but then travel along predefined routes in

the environment, choosing random directions at each route intersection. The position

of each target is sent to the OVM and OGL modules when active. It is possible to

alter target speeds and behavior, although for these simulations, the targets moved

at a constant velocity and were non-evading.

The final module in this section is the passive ground station (GUI). This module

displays the ground truth of the entire mission and allows viewers the chance to see,

at a high level, how the cooperative algorithms are behaving (Figure 4-5). It can

also show the probability distribution of the targets that the agents use for searching
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Figure 4-3: CSAT Simulation OpenGL 3D Environment

Figure 4-4: Vehicles plug into the environment and track targets using the vision
module
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the environment (Figure 4-6), and monitor the agents’ health status, plans, and

communication statistics for each vehicle.

4.2 Onboard Planning Module

The Onboard Planning Module is the main engine in the simulation for the cooper-

ative search and track framework. This section will outline some of the important

features it has that will affect how the CBAA will be implemented.

4.2.1 Searching the Environment

Environments in the CSAT simulator are created offline and discretized into an Nx×

Ny grid of Nc = Nx · Ny identically sized cells. The cells are used to discretize

the probability distribution of the targets, as well as for path planning and obstacle

avoidance. Two types of grid maps exist: search maps and an environment map.

The environment map is initialized to some distribution of targets that is known a

priori, where P 0
i is the probability of finding a previously unknown target in cell i ∈

{1, . . . , Nc}. Search maps represent the probability distributions P k
i , k ∈ {1, . . . , Ns}

for targets that are known or thought to exist, where Ns is the current number of

search maps. Search maps can be created from targets that were found but have since

been lost, or from a target has been found but an accurate state estimate has yet to

be received. There are thus a total of Ns + 1 sets of distributions. At each time step,

the probabilities are updated as follows:

Pi[n + 1|n] =

 0 if i → visited at n

APi[n|n] otherwise
(4.1)

and normalized to

Pi[n + 1|n + 1] =
Pi[n + 1|n]

Nc∑
i=1

Pi[n + 1|n]

(4.2)
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Figure 4-5: CSAT Simulation Ground Monitoring Station

Figure 4-6: Ground Station View of the Cell Probabilities for Target Detection
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where A is the transition matrix

A =


a1,1 a1,2 . . . a1,Nc

a2,1 a2,2 . . . a2,Nc

...
...

. . .
...

aNc,1 aNc,2 . . . aNc,Nc

 (4.3)

with element ai,j ∀i, j ∈ {1, . . . , Nc} defined as the probability of a target of moving

from cell i to cell j at any time. The value of a cell Vi can then be defined as

Vi = Cs

Ns∑
k=0

P k
i (4.4)

where Cs > 0 is the static value associated with searching a cell.

The environment map cells are also used for path planning and obstacle avoidance.

Four different environment types are defined: air, ground, water, under-water. For

each cell in the environment map, each environment type is indicated as either free or

obstructed. Each target is assigned an environment classification, and the transition

function in (4.3) is designed to reflect this. For example, a target that is designated as

being in the water environment type, will only have ai,j > 0 if both cells i and j have

a free water environment classification, and ai,j = 0 otherwise. It should be noted

that a given cell might have multiple free environment types. These environment

types can also be used for path planning. Agents can use the free or obstructed cell

information to plan safe paths through the environment to complete the mission.

Thus, safe paths can be generated that can maximize the detection probability, in a

general discretized environment framework.

4.2.2 Target Tracking

As the environment is searched, the discretized probability distribution is updated

and the transition function propagates this information to the neighboring cells. Once

an updated cell probability meets some pre-determined threshold Pi > α, the search
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map is removed and a track task is created for that target. Let the target state be

defined by

x̂ =


x

y

vx

vy

 (4.5)

where (x, y) is the target position and (vx, vy) the velocity. At each time step, if the

target is in the agent’s field of view, the state is updated with the vision estimate. If

not, the state is updated using a constant velocity model with

x̂k+1 = Atargx̂k (4.6)

where,

Atarg =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 (4.7)

with covariance

Σk+1 = AtargΣkA
T
targ + Qtarg (4.8)

Once the target is tracked, the revisit time and location can be determined based on

the area of the covariance ellipse which can be calculated using

area = π · det(Σk) (4.9)

The OPM projects the target’s current state into the future, and stops when the area

of the uncertainty ellipse has reached the area of a cell. That place and time is then

set as the revisit location. A radix heap implementation of Dijkstra’s algorithm [103]

is used to calculate the shortest path from the revisit location to every cell in the

environment. This is used to ensure that at each time step an agent can arrive at the

task on time while avoiding obstacles.
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4.2.3 Robust Decentralized Task Assignment

As tasks are created in the simulation environment, a task assignment algorithm is

needed to divide the task set amongst the members of the fleet. In the OPM, plan-

ning is done periodically using the Robust Decentralized Task Assignment (RDTA)

algorithm [43, 44]. RDTA is a two-stage task assignment algorithm that is robust

to inconsistencies in the SA of the fleet. The assignment is done periodically, while

agents use consensus strategies to converge on the SA in between assignment periods.

The assignment algorithm works in two stages. In the first stage, each agent

creates a list of all possible permutations P of Nv tasks, and uses the petal algorithm

[14, 104] to create ρi candidate plans by performing the single optimization of (4.10)

ρi times

max
xk

∑
k∈P

Skxk

subject to
∑
k∈P

Nv∑
j=1

Vjkxk ≤ 1

xk ∈ {0, 1}

(4.10)

where Sk is the score achieved by selecting petal k, and xk = 1 if petal k is selected.

At each optimization round, the selected assignment k? is removed from the list of

possible plans for the next iteration.

In the second stage, each agent i sends its ρi plans Mi = {k∗1, k∗2, . . . k∗ρi
} to each

of the other agents in the fleet. Once the plans are received, the final optimization in
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(4.11) is done over all candidate plans to obtain the final solution.

max
xk

Nu∑
j=1

∑
k∈Mj

Sikxik

subject to
Nu∑
j=1

∑
k∈Mj

Nv∑
n=1

Vnkxjk ≤ 1

Nu∑
j=1

xjk = 1

xk ∈ {0, 1}

(4.11)

The final stage of optimization in the RDTA algorithm is based on consistent

plans, which will ensure that there are no conflicts in the final assignment, even if the

SA of the vehicles are slightly different. However, the algorithm requires a connected

network in order to ensure that the candidate petals are received by each agent.

This assumption is not always achieved in search and track missions, thus a timeout

was implemented in the CSAT simulation to allow the second stage optimization to

continue if the network is disconnected. This however comes at the risk of conflicts in

the final assignment, and might significantly increase planning times as the timeout is

increased. To avoid lengthy delays, each agent maintains an estimate of the network

connectivity and maintains a list of agents that it is connected to either directly, or

through other agents, in the network. As the task assignment is executed, each agent

only activates the petal reception timeout for other agents it presumes to have some

connection with. This significantly reduces the waiting time for petals presumed not

to arrive.

4.3 Consensus-Based Bundle Algorithm Implemen-

tation

In the previous section, the search, track, and task assignment mechanisms for the

OPM were introduced. The RDTA algorithm can provide assignments despite incon-

sistencies in the SA, with the limitation that vehicles must ensure that the network
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is connected when the petals are passed. Without this, a timeout must be used and a

consistent SA can no longer be guaranteed. Upon reconnection of the network, or the

reception of new information, the RDTA algorithm must redo the entire optimization

in order to provide a new assignment, or resolve any possible conflicts. This will

reduce its reaction time to new targets and possibly degrade performance.

In this section, a continuous planning scheme for the CBBA will be developed.

As shown in the previous chapter, the CBBA will maintain convergence under vary-

ing network topologies since conflicts will be resolved through the network or rapidly

upon reconnection. The algorithm will also not require the use of timeouts to provide

a solution when the network is disconnected, and will converge regardless of incon-

sistencies in the SA. The continuous planning implementation will be shown to have

much faster reaction times as new tasks are added, since it does not wait for a tasking

period to edit assignments. It also does not need to redo the optimization in order to

incorporate the new information into the assignment; it simply adds it to the current

plan. Finally, enumerating all of the petals in the RDTA is computationally intensive,

thus, the petal sizes are limited to 3 tasks. The bundle algorithm implementation will

be able to handle many more targets per agent, and thus, once targets are discovered,

their locations will be tracked much more efficiently.

4.3.1 Continuous Planning Scheme

The CBBA algorithm was implemented in the CSAT mission simulator as a contin-

uous planning scheme. At each time step, each agent first checks to see if there are

any available tasks that it can perform

Hi = (cij > yij) ∧Ki, ∀j ∈ {1, . . . , Nt} (4.12)

and adds as many as it can to its bundle. Communication with neighboring agents is

done continuously to resolve any conflicts that arise. Search is done when an agent

has excess time before visiting the next task. In this case, trajectories are created

to visit the cells with high task probabilities, while ensuring that the agent stays
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within range of the task location in order to visit it on time. In the absence of new

targets, the assignment remains fixed and each agent executes its current plan. Upon

discovery of a new target, the assignment is perturbed as agents add the new task

and the conflict is resolved. The resolution time of this assignment perturbation is

correlated to the communication period as agents must converge on the winning bids

list to remove the conflicts. Thus, for the CSAT implementation, the task assignment

algorithm was placed on a separate thread which ran at a much higher rate than the

main thread. In these cases, convergence was generally achieved within a single time

step of the main loop.

In the CSAT mission, tasks need to be performed at a specific time or within some

time window. Thus, the scoring metric used in the implementation is different than

the time discounted values used in previous chapters. Figure 4-7 shows a general

scoring function f(t) for a task i, where Si is maximum attainable score, PE and PL

are the penalties per second for being early or late to the task, tMIN and tMAX are

the earliest and latest possible arrival times, and TRi
is the desired arrival time. f(t)

is then calculated using

f(t) = Si −

 PE(TRi
− t) if tMIN ≤ t ≤ TRi

PL(t− TRi
) if tMAX ≥ t > TRi

(4.13)

These parameters can be modified to account for almost any task type. The value

of Si is based on a task’s classification, thus, all agents capable of arriving on time

will have the same task score. To break the tie, the earliest arrival time TEij
is also

passed with the bid. This is the earliest possible time that agent i is able to arrive at

task j while ensuring that all of the other tasks in its bundle are visited at the desired

times. If a scoring tie occurs, the agent with the lower TEij
is assumed to have more

room for error in arriving at the task on time and is thus awarded the task. This also

adds a level of robustness to the assignment by awarding tasks to vehicles with more

flexibility in their assignment.

As new tasks are introduced into the system, the agents react by trying to place

them in the best possible configuration into their bundle. Unlike the RDTA algo-
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Figure 4-7: Task scoring with timing constraints tMIN ≤ t ≤ tMAX

rithm where the entire optimization would need to be re-done, the CBBA planner

was designed to be more reactive to changes in the environment. Furthermore, a dis-

connected network will still create conflicts, but they will be resolved as the network

continues to vary and eventually becomes reconnected. With the RDTA approach,

the fleet must wait for the next optimization period and hope that conflicting agents

can route their petals at that time.

However, problems might still occur with the CBAA as task information changes

while the network is disconnected. Because of this, a task history list is kept by each

agent. An entry is made for each discovered target with information indicating the

task version number, the time the information was last updated, and whether the

task is active or not. Upon each successful track of a given target, its version number

is increased by one and the update time is updated accordingly. The active variable

indicates that a location estimate for the target exists, and that there is a track task

for that target currently in the task list. Agents communicate this information in

order to coordinate the task lists. If an agent realizes that it has old information,

a request is sent to the nearest neighboring agent to transmit the latest target and

associated task information.
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This continuous planning scheme is designed to be reactive to new information in

the environment, and resolve conflicts quickly under varying network topologies. It is

possible, however, that as the mission progresses the assignment may degrades slightly

since agents do not update their bundles unless they are outbid. To accommodate

this, a periodic re-plan might be desired in which a new assignment is calculated

periodically based on the current information. This can easily be enabled in the

continuous CBAA implementation by simply having each agent release each task at

the desired assignment period. Agents will then try and add each task to the bundle

and calculate new assignments based on the updated information.

4.3.2 Task Constraints

The value in adding a task to the current plan is the change in score that the agent will

achieve with the addition of that task to the bundle. Track tasks however generally

have a specific time in which they should be performed, and thus a time discounted

scoring system might not be the best choice. Furthermore, agents in the CSAT

mission are subject to periodic refueling and must sometimes communicate with a

ground station in order to unload the collected data. This section will develop the

scoring function used, and look at how Mixed-Integer Linear Programming (MILP)

can be used to calculate the assignment score under various temporal constraints.

For the CSAT implementation, the GNU Linear Programming Kit (GLPK) [105] was

used to calculate the optimal arrival times given a task list.

Timing Constraints

In the CSAT missions, task scores are calculated using (4.13). When the CBBA

inserts a task to its bundle, it tries to insert it at every location to find the insertion

point that maximizes the total score. However, inserting it may alter the timing of

other tasks, and thus it is important that an accurate scoring calculation be readily

available. Suppose that an agent k has a task list L = {l1 . . . lNi
}, and the goal is

to find the optimal time to arrive at each task given f(ti), i ∈ L, the period ∆Ti an
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agent must be at a task to perform it (i.e. tracking for a certain amount of time), the

distance di+1 from task i to task i + 1 in the list, and the agent’s velocity vk. The

problem can be solved using the following LP:

max

Ni∑
i=1

Zi

s. t. ∀ i ∈ L : Si + (ti − TRi
)PE ≥ Zi

Si − (ti − TRi
)PL ≥ Zi

ti+1 − ti ≥ ∆Ti + di+1

vk

ti ≤ tMAX

ti ≥ tMIN .

(4.14)

For each task insertion point in the current assignment, (4.14) is used to calculate

the score. The insertion point for the maximal score achieved is kept and the task is

inserted at that point, while the arrival times of each task are updated to reflect the

new assignment.

Communicating with a Ground Station

There may exist scenarios in which agents must periodically perform a specific task

during the mission. An example of this is a periodic communication with a ground

station, however it can also be used for refueling, periodic surveillance, etc.... The

scoring function will remain the same as in the previous section, however, the goal is

now to find the optimal task timing and ground station visiting locations such that

communication is made with a ground station every TCOMM seconds. The scoring

and timing constraints of (4.14) will still be in effect, however, new constraints will

be added into the optimization to achieve the assignment goals.

Before the optimization is performed, a tentative communication point is inserted

into each point in the task list (Figure 4.3.2). Let bi ∈ {0, 1} be a binary variable

such that bi = 1 if the ground station should be visited at that point along the

path, and bi = 0 if not. qi+ and qi− will be the last time communication was made,

115



Figure 4-8: Set of tasks with possible ground station communication in between each
one.

and the previous time communication was made with the ground station, so that

qi− − qi+ ≤ TCOMM ∀ i. Also, TCi
is the time it takes to get into communication

range from the task i, TLAST is defined as the last time the agent communicated with

the ground station before the optimization was performed, and M is some very large

number used in the MILP.

The problem can be formulated as a MILP as follows
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max

Ni∑
i=1

Zi

s. t.

q0− ≤ TCOMM + q0+

q0− ≤ TC0 + M · (1− b0)

q0− ≤ q1−

q0− ≥ q1− −M · b0

q0− ≥ TC0 −M · (1− b0)

qNi− ≤ TCOMM + qNi+

qNi− ≤ TCNi

qNi+ ≥ TCNi−1
−M · (1− bNi−1)

qNi+ ≥ q(Ni−1)+

qNi+ ≤ q(Ni−1)+ + M · bNi−1

qNi+ ≤ TCNi−1
+ M · (1− bNi−1)

∀ i ∈ {l2 . . . lNi−1}

qi− ≤ TCi
+ M · (1− bi)

qi− ≤ q(i+1)−

qi− ≥ q(i+1)− −M · bi

qi− ≥ TCi
−M · (1− bi)

qi+ ≥ TCi−1
−M · (1− bi−1)

qi+ ≥ q(i−1)+

qi+ ≤ q(i−1)+ + M · bi−1

qi+ ≤ TCi−1
+ M · (1− bi−1)

(4.15)

If a task in the plan is within communication range, the optimization can be

simplified by setting

qi− = qi+ (4.16)

This ensures that the time in between communicating with the ground station is

separated by no more than TCOMM seconds. An assumption in this formulation is

that the desired arrival time between tasks is less than TCOMM . If this is not the

case, the formulation should be loosened to allow for violation of the TCOMM limit,

and move the requirement to the trajectory planner to ensure that the constraint in

between task visits is satisfied.
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4.4 Results

Numerical results were obtained to compare the periodic RDTA strategy against

the continuous CBBA strategy developed herein. Five different metrics were used

for comparison: area searched, percentage of targets found, average track time, the

mission index, and the response time. Two sets of simulations were performed. In

the first set, the number of tasks was held constant at eight, while the communication

range of the fleet was increased from a ratio ( R
W

) of 0.3 with respect to the map width

W , to 1 × W . The second set involved keeping the communication range fixed at

0.6×W while the number of targets was varied from 2 to 8. Each data point is the

average of six separate missions with randomized target locations and trajectories. In

each case, the fleet consisted of three helicopters. The missions lasted 900 seconds,

while the refuel and ground station communication times were set to 300 and 200

seconds respectively.

4.4.1 Area Searched

The percentage of the map that was searched was calculated for each algorithm.

Figures 4-9 and 4-10 show the results with varying communication range and targets

respectively. In both cases the amount of search that was done was slightly higher

for the CBBA algorithm. This was because the algorithm was quicker to come to a

decision on the track tasks, thus, there was generally more slack time that could be

allocated to searching the environment than in the RDTA algorithm.

4.4.2 Targets Found

Another search metric that was calculated was the percentage of tasks that were

found during the simulation. This reflects how well the agents were able to search the

relevant, high likelihood areas of the environment. Figure 4-11 shows the percentage

of targets that were found with increased communication range. As in the area

searched, the results show that the two algorithms behave approximately the same

for searching the environment, and communication has shown no effect.
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Figure 4-9: The percentage of the area searched stays relatively constant with in-
creased communication
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Figure 4-10: The percentage of the area searched with increased tasks in the environ-
ment
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Figure 4-11: The percentage of targets found were approximately equal for both
algorithms

4.4.3 Target Tracking

Once a target is discovered, track tasks are periodically performed in order to keep

track of their locations. As the revisit rates are increased, the chance of losing track

of the target diminishes, however so too does the agent’s ability perform any other

tasks or search the environment. By revisiting too infrequently, the likelihood of the

task being in the estimated location diminishes and targets are more often lost.

The metric used in this section will be the percentage of time the estimated

position of a target was accurate after it was first discovered. Let Ptrack be the

average percentage of time that a target location was within a certain distance of

the estimated position
√

(x− x̂)2 + (y − ŷ)2 ≤ de, where de is a pre-defined distance,

(x, y) is the actual target position while (x̂, ŷ) is the estimated position. Ptrack can

then be calculated as
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Ptrack =

∑Ndisc

i=1

∑
∀ t>tidisc

(
√

(x(t)− x̂(t))2 + (y(t)− ŷ(t))2 ≤ de)

Ndisc · TM

(4.17)

where tidisc is the time at which task i was first discovered, and Ndisc is total number

of tasks that were found during the mission. This value gives a good indication as

to how well the discovered targets were tracked, and penalizes the fleet for tasks that

were lost by including those times in the calculation.

Figure 4-14 shows the target track information for different communication ranges.

The CBBA tracking performance is much higher than that of RDTA since it is much

quicker to make decisions and is therefore more likely to arrive at a task before it is

lost. Furthermore, due to the computational efficiency, the CBBA is able to handle

more targets per agent than RDTA is, which will also improve its ability to track by

not having to wait for a new assignment once it is finished with the current plan. As

the communication range is increased from 0.1, the value of CBBA algorithm is able

to make use of the increased connectivity to provide better assignments and improve

the tracking performance. However, with a fully connected graph (far right), the

convergence time becomes more of a factor and the performance slightly decreases.

For the RDTA algorithm with low connectivity, agents do not have to wait to receive

the bids from the rest of the fleet, thus their reaction time is much faster for lower

communication environment. Although the tracking performance is slightly increased

when a small amount of communication is added, as it is increased further the con-

vergence time of the algorithm starts to affect the tracking time and the performance

slightly degrades.

4.4.4 Mission Value

Although the time-tracked percentage is a good indication of how well the algorithm

was able to keep track of discovered targets, it does not give a good indication as to

how well it performed the mission. For example, if there were 8 targets, and only one

target was found but was tracked the entire time, the percentage tracked would read
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Figure 4-12: The average percentage of time that the estimated position of a target
was accurate after it was first discovered
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Figure 4-13: The Mission Value (MV) reflects the ability of the fleet to find the targets
and keep track of them. A maximum value of 100% is achieved if both were done
perfectly.
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100%. However, in reality, this was simply a function of the vehicles not searching

the environment well enough. This motivates the need for a metric that can combine

the track information with search metrics. The metric proposed here is the Mission

Value (MV), and will be the defined as

MV = Ptrack ∗
Ndisc

Nt

(4.18)

where Ptrack is the average percentage of time that a discovered target was within a

pre-defined radius of the estimated location, Ndisc is the total number of targets that

were discovered, and Nt is the total number of targets in the environment. Notice

that the value of this is maximal when all targets are found and perfectly tracked for

the duration of the mission.

Figure 4-13 shows the average MV for both algorithms as a function of the com-

munication range. The CBBA is shown to perform the search and track mission

much more efficiently than RDTA can. Furthermore, it is shown that up to a certain

communication range, the CBBA algorithm improves, which indicates how it is able

to make efficient use of the network structure to improve the mission performance.

For RDTA however, the MV actually decreases as communication is increased from

0.1 to 0.6. This is due to the algorithm timeout that was implemented. With very

little communication (∼ 0.1), RDTA does not wait to receive plans from the other

agents and continues with the second stage of optimization right away. This leads to

increased reaction time and the fleet is able to visit all of the track tasks, however,

conflicts will exist in the assignment. As the communication is increased, the agents

knowledge of the network becomes uncertain and agents will be more likely to be-

lieve there is a link between other agents when there is not. This initiates the plan

reception timeout in the second stage and causes significant delays if the plans are

not received. This reduces reaction time and reduces the chance that a task is in the

estimated location by the time it is visited. If the communication range is further

increased to a fully connected network (∼ 1), the knowledge of the network structure

is improved and the plans are received quickly and the assignment time is improved.
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4.4.5 Response Time

In search and track missions, new targets are continuously discovered and task assign-

ment algorithms should be able to effectively handle this new information. The state

estimate may be initially poor or the target may be evading, thus it is important to

reduce any delays in performing the new task. This section will discuss the average

response time of both algorithms. The metric is based on the average time it took

for a newly discovered target to be tracked by any agent.

Figures 4-14 and 4-15 response time as a function of communication range and

the number of targets. Once again, it is shown that the CBBA algorithm can respond

much more quickly to new information because of the efficient manner in which tasks

are added to the fleet. It is interesting to note that although the CBBA algorithm has

a slightly improved response time as the network range is increased, RDTA becomes

much worse. This is because the increase connectivity forces the algorithm to wait

for the rest of the fleet’s plans and significantly slows the assignment process.
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Figure 4-14: Average response time as a function of communication range.
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Chapter 5

Conclusion

5.1 Summary

This thesis has presented new approaches to multi-agent task assignment that in-

creases both robustness to inconsistencies in the situational awareness, and robust-

ness to time varying network topologies. The consensus-based class of optimization

algorithms was developed by incorporating ideas from market-based systems, as well

as from the information consensus literature. These types of algorithms were shown

to be useful in highly dynamic environments with limited communication such as

those found in search and track missions.

Chapter 2 introduced the Consensus-Based Auction Algorithm (CBAA). The al-

gorithm is a greedy single assignment strategy that performs consensus on a winning

bids list in order to efficiently resolve conflicts in the fleet. The presented algorithm

was shown to guarantee 50% optimality in the worst case, and to give much better ex-

pected performance for some illustrative abstractions. Regarding convergence of the

algorithm, the CBAA was shown to converge in finite time where the upper bound

of the convergence time can be easily quantified. Under some mild assumptions,

the algorithm was also shown to converge regardless of inconsistencies in situational

awareness and the evolution of the network topology. Numerical results suggested

that the solution of the CBAA is very close to optimum. In environments with sparse

communication, the algorithm was shown to have better performance than competing
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strategies such as the ETSP auction algorithm and a greedy based solution.

Chapter 3 extended the CBAA to the multiple assignment problems in two ways.

The first one, which is a straightforward extension of CBAA, performs multiple iter-

ations of CBAA routines. It was shown that this iterative extension converges faster

than traditional sequential auction strategies. The second algorithm, the Consensus-

Based Bundle Algorithm (CBBA), resolves potentially poor performance of the iter-

ative CBAA and provided faster convergence under slight assumptions on the scoring

mechanism. In the CBBA, bundles of tasks are created and conflicts are resolved in

parallel, which enables various permutations of assignment patterns to improve the

performance of the assignment. It was shown that the CBBA guarantees 50% opti-

mality in the worst case, while the actual performance for more practical settings is

much better than this worst case. Numerical experiments confirmed fast convergence

and good performance of the CBBA, while representing much better scalability than

the implicit coordination method that finds the optimal solution. Finally, the CBBA

was compared against the Prim Allocation algorithm, a standard sequential auction-

ing approach, and was shown to have much faster convergence times will providing

better assignments.

Chapter 4 presented the implementation of a continuous time CBBA into a so-

phisticated search and track mission simulator. Instead of performing a periodic

assignment on a set list, new tasks are inserted into the fleet as they arise and the

assignments re-configure themselves to attain the highest score. Simulations were

done to compare this approach with a periodic RDTA assignment system that is cur-

rently in. The CBBA was shown to exhibit faster response times to newly discovered

targets, was able to handle more track tasks and was able to attain higher mission

performances. The CBBA algorithm was also shown to make efficient use of the

communication structure in order to improve the performance of the fleet.

In summary, the objectives of this thesis were to develop task assignment algorithms

that were:

1. Flexible to varying network structures and communication linkages
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2. Robust to dynamic and uncertain environments

3. Guaranteed convergence with an inconsistent SA

4. Provided fast convergence times with optimal or near-optimal solutions

For each algorithm, convergence was shown to be bounded within varying network

topologies provided that the union of networks over time were connected. Further-

more, in each case, it was shown that inconsistencies in the SA did not affect the con-

vergence of the algorithm, but did however affect the value of the final assignment.

Finally, each algorithm was shown to converge much faster than other competing

approaches, while giving near optimal assignments.

5.2 Future Work

The algorithms developed in this thesis have shown promise in missions involving

erratic communication links with high levels of uncertainty. Further work should be

done to refine these algorithms to ensure that they are scalable and robust to all

environment types. Although the scoring systems used in this thesis were often based

on time or distance, it is presumable that many other scoring functions exist, perhaps

giving even better results. It would also be beneficial to generalize the problem so that

the insertion algorithm used to insert a task into a bundle could theoretically be for

any type of system. Finally, the sub-modularity requirement on the scoring function

should be re-visited in hope of relaxing this constraint on the scoring mechanism.

For search and track missions, this thesis focused on comparing against the RDTA

algorithm that was previously implemented into the CSAT architecture. Results

indicated that the CBBA was an improvement, but the task assignment literature

for these types of missions has yet to be completely explored. Different algorithms

exist and should be implemented for comparison. Furthermore, there are many other

applications other than search and track missions that require algorithms robust to

network variations, thus, the CBBA should be explored as a possible solution for

other such scenarios.
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Finally, different metrics should be considered as comparisons for the CSAT mis-

sion. Analysis should be done to determine the fleet’s mission efficiency. This analysis

would look for conflicting assignments and provide an estimate of the amount of time

agents did overlapping tasks. This would be especially useful in the low communica-

tion analysis. Also, for these simulations only a single vehicle type was used, however,

much larger and more complex scenarios could be simulated.
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Appendix A

CBAA Performance with Specific

Scoring Structure

Simulations were performed to verify the CBAA performance in specific mission sce-

narios. In each case, scores were calculated using

cij = Cj · λ
dij
vi (A.1)

where Cj = 100 is the maximum task score, λ = 0.95 is the time discount factor, dij

is the distance from agent i to task j, and vi = 40m/s is the constant speed of the

agents.

In Figure A-1, tasks and agents were uniformly distributed throughout a 2000m×

2000m grid, while Figure A-2 shows the same grid, but with the agents and tasks

uniformly distributed along parallel lines. In Figure A-3, the tasks were uniformly

distributed in the top right quadrant while the agents were uniformly distributed in

the bottom left. Finally, in Figure A-4, agents were uniformly distributed along a

circle of radius Ru = 1000m, while the tasks were uniformly distributed around a

concentric circle of Rt = αRu, where α = 0.5. In all cases, the performance was much

better (< 3% optimality gap) than in the randomly generated scoring matrix cases

(< 6% optimality gap) presented in chapter 2.
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Figure A-1: The deviation of the CBAA algorithm with uniformly generated tasks
and agents in a grid
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Figure A-2: The deviation of the CBAA algorithm with uniformly generated tasks
and agents along parallel lines
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Figure A-3: The deviation of the CBAA algorithm with uniformly generated tasks in
one quadrant of a grid, and uniformly distributed agents in another
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Figure A-4: The deviation of the CBAA algorithm with uniformly generated tasks
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Appendix B

Algorithm Details

B.1 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) [94] is a problem in which, given a list of

cities and a cost of traveling in between each of them, a salesman must find the

cheapest way of visiting each one while returning to the start position. The solution

to this problem is often called the TSP tour of the cities. The problem is known

to be NP-hard, and can be formulated using integer programming methods [106] as

follows

max
N∑

i=1

N∑
j=1

cijxij

subject to
N∑

i=1

xij = 2∑
δ(S)

xij ≥ 2, S ⊂ N , S 6= ∅

xij ∈ {0, 1}

(B.1)

where N is the total number of cities to visit, cij is the cost of traveling from city i

to city j, xij = 1 if the path from city i to city j is active, and S is any non-empty

subset of the set of nodes N . The first constraint ensures that each node participates
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in exactly two edges along the tour, while the second constraint makes sure that the

entire path is connected and does not consist of multiple sub-tours.

B.2 Cheapest Insertion Algorithm

The cheapest insertion algorithm [93, 95] is an approximate algorithm for solving the

Traveling Salesman Problem (TSP). The algorithm starts with a sub-graph consisting

of the starting node, and iteratively selects the lowest cost city to insert into the sub-

tour. This procedure is continued until every city has been added to the tour

Algorithm 3 Cheapest Insertion Algorithm:

1: Start with initial sub-tour S of city s only
2: while |S| < N do
3: procedure Insert into Sub-tour
4: ∀ k /∈ S
5: Find argmink{ mini,j{cik + ckj − cij} }
6: Insert city k in between cities i and j in S
7: end procedure
8: end while

The Cheapest Insertion Algorithm can be shown to produce tours no longer than

twice the length of the optimal tour, and computations on the order of n2lg(n)
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